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We develop a weakly nonlinear model of duct acoustics in two and three dimensions (without
flow). The work extends the previous work of McTavish & Brambley (2019, J. Fluid Mech.
875, pp. 411–447) to three dimensions and significantly improves the numerical efficiency. The
model allows for general curvature and width variation in two-dimensional ducts, and general
curvature and torsion with radial width variation in three-dimensional ducts. The equations of
gas dynamics are perturbed and expanded to second order, allowing for wave steepening and the
formation of weak shocks. The resulting equations are then expanded temporally in a Fourier
series and spatially in terms of straight duct modes, and a multi-modal method is applied, resulting
in an infinite set of coupled ODEs for the modal coefficients. A linear matrix admittance and its
weakly-nonlinear generalization to a tensor convolution are first solved throughout the duct, and
then used to solve for the acoustic pressures and velocities. The admittance is useful in its own
right, as it encodes the acoustic and weakly-nonlinear properties of the duct independently from
the specific wave source used. After validation, a number of numerical examples are presented that
compare two- and three-dimensional results, the effects of torsion, curvature and width variation,
acoustic leakage due to curvature and nonlinearity, and the variation in effective duct length of a
curved duct due to varying the acoustic amplitude. The model has potential future applications
to sound in brass instruments. Matlab source code is provided in the supplementary material.
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1. Introduction
Brass instruments are understood to sound brassy due to nonlinear wave-steepening within
the instrument (Hirschberg, Gilbert, Msallam & Wĳnands 1996). This has been observed
experimentally for a trombone (Hirschberg et al. 1996; Rendón, Orduña Bustamante, Narezo,
Pérez-López & Sorrentini 2010) and for a trumpet (Pandya, Settles & Miller 2003; Rendón,
Ezeta & Pérez-López 2013), and is supported by relatively simple physical models (e.g. Gilbert,
Menguy & Campbell 2008). In these studies, attention is often given to the width, or bore, of an
instrument, and its variation along its length. Varying the bore so that it progressively gets wider
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lowers the amplitude of the outward-propagating wave, resulting in less nonlinear steepening and
a less brassy sound. Conversely, a cylindrical bore that does not widen (such as is necessary
for a trombone slide to be able to slide) allows nonlinear steepening to occur, exciting higher
harmonics and leading to a more brassy sound. Myers, Pyle, Gilbert, Campbell, Chick & Logie
(2012) even proposed a dimensionless brassiness parameter 𝐵 based on the bore variation in
order to quantitatively classify musical instruments by their brassiness. Most of the modelling
in this area assumes plane-wave propagation and straight ducts, although Fernando & Druon
(2011) allowed for non-plane-wave propagation by introducing a cross-duct modal expansion
while retaining the straight duct approximation.

However, very few brassy-sounding musical instruments are straight; for example, a traditional
B♭ trumpet has a duct that, if straightened, would be about three times as long as the instrument.
In order to investigate the acoustics of curved ducts, Félix & Pagneux (2001) generalized the
multi-modal method previously developed by Pagneux, Amir & Kergomard (1996) for ducts with
width variation. While initially developed in two dimensions, it was subsequently extended to
three (Félix & Pagneux 2002). The multi-modal method involves the projection of the curved-duct
acoustics equations for pressure and velocity onto a basis of straight-duct modes, converting the
governing PDEs into an infinite coupled set of ODEs for the amplitude of each mode. The ratio
of the velocity and pressure, known as the admittance, is then taken, and a Riccati-style equation
for the admittance is solved. As well as being computationally tractable, this formulation has the
potential to provide better physical intuition than, for example, direct numerical simulation, as the
admittance encodes the downstream effects of the duct geometry independently of the form of the
acoustic wave introduced upstream. This will be seen below, as we will follow a similar procedure
here. However, this multi-modal method depends on the linearity of the acoustic equations, and
so is not able to model the weak nonlinearity necessary for investigating brassiness.

The tuning of a wind instrument is given by the effective length of the duct, and acoustic modes
travelling around the outside of a duct bend would see a different effective length compared
with acoustic modes travelling around the inside of a duct bend, resulting in a different resonant
pitch. Brass instruments shift their pitch slightly when played louder. Could perhaps nonlinear
steepening affect the effective length of a duct bend? Could instruments be designed for pitch
stability as the sound amplitude is varied? Or, if curved ducts behave similarly to straight ducts,
is it possible to say why and to quantify the extent to which they do so? Such an analysis would
require a framework capable of analysing nonlinear acoustics in curved ducts.

Recently, McTavish & Brambley (2019) combined the curved-duct linear multi-modal method
of Félix & Pagneux (2001) with the straight-duct nonlinear multimodal method of Fernando &
Druon (2011) to describe the weakly-nonlinear acoustics of curved ducts in two dimensions. Even
restricted to two dimensions, the algebraic complexity of the resulting system was prohibitive,
and so a linear matrix and nonlinear tensor convolution notation was developed. Because the
matrices and tensors involved in the governing equations varied as the duct geometry varied,
the technique was computationally inefficient; nonetheless, it was possible to analyze a range of
curved geometries in both the linear and nonlinear regimes.

The aim of the work presented here was originally to extend the two-dimensional analysis of Mc-
Tavish & Brambley (2019) to three dimensions. In so doing, a modified mathematical framework
was developed that combines both two- and three-dimensional cases, is computationally more
efficient, and is easier to understand in terms of the interplay between the nonlinearity and the duct
geometry (consisting of width variation, curvature, and, in three dimensions, torsion). Section 2
derives this mathematical framework from the governing fluid mechanics equations, resulting in
the multimodal set of governing ODEs valid in both two and three dimensions given in section 2.6.
These equations are then solved using the multi-modal method in section 3, first by introducing the
admittance (§3.1) and then by truncating and numerically solving (§3.5). A number of numerical
results are then presented in section 4, including validation for a straight duct (§4.1), a constant
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curvature bend in two and three dimensions (§4.2 and §4.3), and an exponential horn (§4.4),
along with more interesting cases involving combinations of curvature, width variation, torsion,
and nonlinearity. In particular, the leakage of acoustics from a duct owing to either curvature or
nonlinearity is demonstrated in section 4.6, a direct comparison of two-dimensional results against
three-dimensional results made possible by the combined mathematical framework is given in
section 4.8, and an investigation of the effective acoustic length of a bend is given in section 4.9.
The results are summarized and discussed in the concluding section 5, together with possibilities
for future work. Matlab source code that produces the results shown here is provided in the
supplementary material, along with videos animating some of the figures.

2. Formulation of the Governing Equations
In this section, we derive the governing equations in the weakly nonlinear limit that will be solved
in subsequent sections. The derivation follows that of McTavish & Brambley (2019), although
here we do not limit ourselves to only two dimensions.

2.1. Derivation of the weakly nonlinear equations
We start with the equations of mass and momentum conservation for an inviscid fluid,

𝜕𝜌̂

𝜕𝑡
+ ∇̂·( 𝜌̂𝒖̂) = 0, 𝜌̂

(
𝜕𝒖̂

𝜕𝑡
+ 𝒖̂ · ∇̂𝒖̂

)
= −∇̂𝑝. (2.1)

Dimensional quantities are written with hats here. In this paper, we work in either two or three
dimensions; note that in 𝑛 dimensions, these give us 𝑛+1 equations in 𝑛+2 variables (one density,
𝑛 velocities, and one pressure). We therefore close the system of equations using the equation of
state in combination with the thermal energy equation for an adiabatic gas (consistent with an
inviscid non-heat-conducting fluid),

𝑝 = 𝑝(𝑆, 𝜌̂), D𝑆

D𝑡
= 0. (2.2)

Since we are interested in acoustics, we expand these equations for a small perturbation about
an ambient state of rest. To do so, we first need some notion of size, so we introduce reference
quantities and non-dimensionalise. Let the ambient density, pressure and entropy be denoted by
𝜌̂0, 𝑝0 and 𝑆0 respectively. The ambient speed of sound 𝑐0 is then given by

𝑐2
0 =

𝜕𝑝

𝜕𝜌̂

����
𝑆̂

( 𝜌̂0, 𝑆0), (2.3)

where the subscript zero here and elsewhere in this section denotes evaluation at the ambient
state. Using 𝜌̂0 and 𝑐0, non-dimensional variables are defined by setting

𝜌̂ = 𝜌̂0𝜌, 𝒖̂ = 𝑐0𝒖, 𝑝 = 𝜌̂0𝑐
2
0𝑝. (2.4)

We also need spatial and temporal reference scales. The spatial reference lengthscale is denoted ℓ̂0,
typically given by the inlet radius of the duct. The timescale is then 𝑐0/ℓ̂0, so the nondimensional
operators are

∇̂ =
1
ℓ̂0
∇ and

𝜕

𝜕𝑡
=

𝑐0

ℓ̂0

𝜕

𝜕𝑡
. (2.5)

We now perturb about an ambient state of rest,

𝜌 = 1 + 𝜌′, 𝒖 = 0 + 𝒖′, 𝑝 = 𝑝0 + 𝑝′, (2.6)
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taking 𝜌′ ∼ 𝑝′ ∼ |𝒖′ | ∼ 𝑀 , where 𝑀 ≪ 1 is the perturbation Mach number. Since we are
interested in weak nonlinearity, we will neglect terms of order𝑂 (𝑀3) or smaller but retain both the
linear acoustic𝑂 (𝑀) and weakly nonlinear𝑂 (𝑀2) terms. Using the nondimensionalizations (2.4,
2.5) in the governing equations (2.1) and substituting the perturbed quantities (2.6) then results
in

𝜕𝜌′

𝜕𝑡
+ ∇ · 𝒖′ = −𝜌′∇ · 𝒖′ − 𝒖′ ·∇ 𝜌′ = 𝜌′

𝜕𝜌′

𝜕𝑡
− 𝒖′ ·∇ 𝜌′ +𝑂 (𝑀3), (2.7a)

𝜕𝒖′

𝜕𝑡
+ ∇𝑝′ = −𝒖′ · ∇𝒖′ − 𝜌′

𝜕𝒖′

𝜕𝑡
+𝑂 (𝑀3). (2.7b)

Here, and in what follows, we write the linear acoustic 𝑂 (𝑀) quantities on the left hand side of
equations and the nonlinear 𝑂 (𝑀2) terms on the right hand side. Note that in (2.7a) the linear
expression ∇ · 𝒖′ = −𝜕𝜌′/𝜕𝑡 + 𝑂 (𝑀2) was substituted in the right hand side, resulting in an
expression that is still correct to order 𝑂 (𝑀3). This is a technique we will make further use of
below.

Since we are primarily interested in acoustic perturbations, we will neglect entropy perturba-
tions, so that 𝑆′ ≡ 0 and so 𝑆 ≡ 𝑆0 everywhere. This means all perturbations are adiabatic, and
so we may eliminate either the pressure or density perturbation using the expanded equation of
state:

𝑝′ = 𝜌′ + 1
2
𝜕2𝑝

𝜕𝜌2

����
𝑆

𝜌′2 +𝑂 (𝑀3) ⇔ 𝜌′ = 𝑝′ − 1
2
𝜕2𝑝

𝜕𝜌2

����
𝑆

𝑝′2 +𝑂 (𝑀3), (2.8)

where the second-order partial derivative is evaluated at the ambient state (𝜌0, 𝑆0), and the identity
𝑝′ = 𝜌′+𝑂 (𝑀2) has been used to rearrange between the left and right expressions. If we consider
a perfect gas, a consequence of adiabacity is that (𝑝/𝑝0) = ( 𝜌̂/𝜌̂0)γ , where the adiabatic index γ

is the ratio of specific heats. Consequently, for a perfect gas

𝑐2
0 =

𝜕𝑝

𝜕𝜌̂

����
𝑆̂

=
γ𝑝0
𝜌̂0

, and
𝜕2𝑝

𝜕𝜌̂2

����
𝑆̂

= γ (γ − 1) 𝑝0

𝜌̂2
0
= (γ − 1)

𝑐2
0
𝜌̂0

, (2.9)

so that 𝑝0 = 1/γ and 𝜕2𝑝/𝜕𝜌2 |𝑆 = (γ−1) when 𝜌0 = 1 and 𝑐0 = 1. In what follows, for simplicity
we will use this perfect gas notation, although the derivation is general provided it is taken that
γ = 1 + 𝜕2𝑝/𝜕𝜌2 |𝑆 and 𝑝0 is not assumed to be 1/γ.

We now eliminate the density perturbation 𝜌′ using (2.8), and, correct to 𝑂 (𝑀2) and dropping
the 𝑂 (𝑀3) from each equation for brevity, this finally results in

𝜕𝑝′

𝜕𝑡
+ ∇ · 𝒖′ = γ𝑝′

𝜕𝑝′

𝜕𝑡
− 𝒖′

·∇ 𝑝′ =
1
2
𝜕

𝜕𝑡

(
γ𝑝′2 + |𝒖′ |2

)
, (2.10a)

𝜕𝒖′

𝜕𝑡
+ ∇𝑝′ = −𝒖′

· ∇𝒖′ − 𝑝′
𝜕𝒖′

𝜕𝑡
=

1
2
∇

(
𝑝′2

)
− 𝒖′

· ∇𝒖′, (2.10b)

where again the 𝑂 (𝑀) identity 𝜕𝒖′/𝜕𝑡 = −∇𝑝′ + 𝑂 (𝑀2) from the left hand side of (2.10b) has
been used to rearrange the right-hand sides of both equations.

2.2. Further assumptions
Equations (2.10) may be simplified further. Taking ∇ of both sides of (2.10b), we apply symmetry
of mixed partial derivatives on∇∇𝑝′ and find that the spin tensor of the velocity is linearly constant
in time, i.e.

𝜕

𝜕𝑡

(
∇𝒖′ − (∇𝒖′)T

)
= 0 +𝑂 (𝑀2). (2.11)

Focus on Fluids articles must not exceed this page length
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If we assume all acoustic variables to be periodic, we can define a time-average ⟨•⟩, and then
deduce that

∇𝒖′ − (∇𝒖′)T =

〈
∇𝒖′ − (∇𝒖′)T

〉
+𝑂 (𝑀2). (2.12)

Having worked to a relatively high degree of generality so far, we now outline a hierarchy of
physically-justified assumptions, ordered by strength, that will simplify the coming calculations.

• Assumption 1 (weakest): Taking the time average of (2.10a) shows that ∇ · ⟨𝒖′⟩ = 𝑂 (𝑀3),
meaning ⟨𝒖′⟩ corresponds to a steady, viscosity-free incompressible mean flow to the order
considered here. Under these circumstances, we would expect this mean flow to be vorticity-free,
implying ∇⟨𝒖′⟩ − (∇⟨𝒖′⟩)𝑇 = 𝑂 (𝑀2), and consequently in light of (2.12) that (2.10b) may be
equivalently written as

𝜕𝒖′

𝜕𝑡
+ ∇𝑝′ =

1
2
∇

(
𝑝′2 − |𝒖′ |2

)
. (2.13)

This assumption may also be justified by noting that we would expect the flow in a musical
instrument to be vorticity-free.
• Assumption 2a (stronger): On top of assumption 1, by taking a time average of (2.13) we

see that the quantity ⟨𝑝′⟩ − 1
2

〈
𝑝′2 − |𝒖′ |2

〉
is spatially constant, where the constant corresponds to

an 𝑂 (𝑀) change in the far-field ambient pressure 𝑝0. By suitably choosing 𝑝0 we may therefore
set this change in ambient pressure to be zero, and consequently ⟨𝑝′⟩ = 𝑂 (𝑀2).
• Assumption 2b (also stronger): On top of assumption 1, we may assume the mean flow

⟨𝒖′⟩ to be identically zero. This is justified by imposing an inlet condition with no mean flow,
and noting that no mean flow is induced by the nonzero frequency modes. Thus, ⟨𝒖′⟩ = 0. This
agrees with our physical intuition that, when musical instruments are played, no flow of significant
Mach number is expected. This assumption would therefore be valid for musical instruments, but
perhaps not for, for example, thermoacoustic engines, where the acoustics driving a mean flow is
an important component of the engine.

Henceforth we will take all of these assumptions to be true. Defining the coefficient of
nonlinearity β0 := (γ + 1)/2, and introducing the 𝑂 (𝑀2) quantity 𝑄′ := (𝑝′2 − |𝒖′ |2)/2 (which
could arguably be thought of as a Lagrangian of the perturbation), we have

𝜕𝑝′

𝜕𝑡
+ ∇ · 𝒖′ =

𝜕

𝜕𝑡

(
β0𝑝

′2 −𝑄′
)
,

𝜕𝒖′

𝜕𝑡
+ ∇𝑝′ = ∇𝑄′. (2.14)

Note that β0 has been written with a zero subscript in order to avoid confusion with the spatial
mode enumerator 𝛽 used later on.

2.3. Fourier modal decomposition
At this point, because we are interested in tonal acoustics, we assume a base frequency 𝜔 and
decompose pressure and velocity into Fourier modes by writing

𝑝′ (𝒙, 𝑡) =
∞∑︁

𝑎=−∞
𝑃𝑎 (𝒙)e−i𝑎𝜔𝑡 , 𝒖′ (𝒙, 𝑡) =

∞∑︁
𝑎=−∞

𝑼𝑎 (𝒙)e−i𝑎𝜔𝑡 . (2.15)

Here 𝜔 is a dimensionless frequency, representing the Helmholtz number. To ensure that 𝑝′ and
𝒖′ are real, we must have 𝑃−𝑎 = 𝑃𝑎∗ and 𝑼−𝑎 = 𝑼𝑎∗, where an asterisk denotes the complex
conjugate. Our equations for 𝑝′ and 𝒖′ (with 𝑎 = 0 modes discounted due to assumptions 2a
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Figure 1: The duct geometry in two dimensions (left) and three dimensions (right). A
Frenet-Serret frame is employed in each case, with centreline 𝒒(𝑠), tangent 𝒕(𝑠) and

normal 𝒏(𝑠); additionally in three dimensions we have a binormal 𝒃(𝑠). The
two-dimensional duct has independently varying wall widths 𝑋+ (𝑠) and 𝑋− (𝑠), whereas

the three-dimensional duct has a single axisymmetrically-varying wall width 𝑅(𝑠).

and 2b above) become

−i𝑎𝜔𝑃𝑎 + ∇ ·𝑼𝑎 = −i𝑎𝜔

(
−𝑄𝑎 +

∑︁
𝑏≠0,𝑎

β0𝑃
𝑎−𝑏𝑃𝑏

)
, (2.16a)

−i𝑎𝜔𝑼𝑎 + ∇𝑃𝑎 = ∇𝑄𝑎, (2.16b)
where 𝑄′ has a Fourier series coefficient given by

𝑄𝑎 =
1
2

∑︁
𝑏≠0,𝑎

𝑃𝑎−𝑏𝑃𝑏 −𝑼𝒂−𝒃 ·𝑼𝒃 . (2.17)

For brevity, we will now assume 𝑃0 ≡ 𝑈0 ≡ 0 and simply sum over all 𝑏.

2.4. Duct coordinate system
2.4.1. The coordinate system in two dimensions
As shown in figure 1 (left), the two-dimensional duct is defined by a centreline 𝒒(𝑠) (where
𝑠 is the arc-length parameterising distance along the duct), a total width at each point 𝑋 (𝑠),
and independently varying wall widths 𝑋− (𝑠) < 0 and 𝑋+ (𝑠) > 0, defined such that 𝑋 (𝑠) =

𝑋+ (𝑠) − 𝑋− (𝑠).† The direction along the duct is the longitudinal direction, and the direction
perpendicular to this is the transverse direction. The longitudinal direction has coordinate 𝑠, and
for the transverse direction we introduce a coordinate 𝑥 ∈ [𝑋− (𝑠), 𝑋+ (𝑠)]. This coordinate basis

† The choice to include independently varying wall widths was made early in the formulation of the
model, in order to increase the degrees of freedom; in this paper, however, we take the centreline to remain
in the centre throughout. Asymmetric wall-width variation would be an interesting area of future study, for
example for ducts with cavities on only one side.
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arises from the Frenet–Serret frame defined by the centreline 𝒒(𝑠), i.e. the tangent and normal
unit vectors 𝒕 and 𝒏 satisfying

d𝒒
d𝑠

= 𝒕,
d𝒕
d𝑠

= 𝜅𝒏,
d𝒏
d𝑠

= −𝜅 𝒕, (2.18)

with the scalar 𝜅(𝑠) representing the curvature of the duct. Any point in the duct then has
coordinates (𝑠, 𝑥) and position vector

𝒙 = 𝒒(𝑠) + 𝑥𝒏(𝑠). (2.19)

A differential d𝒙 and a metric d𝒙 · d𝒙 may then be calculated, from which we may read off the
Lamé coefficients and (𝑠, 𝑥) basis vectors

ℎ𝑠 = 1 − 𝜅𝑥, ℎ𝑥 = 1, 𝒆𝑠 = 𝒕, 𝒆𝑥 = 𝒏. (2.20)

This is all of the machinery necessary to project the governing equations (2.16). Setting 𝑼𝑎 =

𝑈𝑎𝒆𝑠 +𝑉𝑎𝒆𝑥 , we get

−i𝑎𝜔𝑃𝑎 + 1
ℎ𝑠

𝜕𝑈𝑎

𝜕𝑠
+ 1
ℎ𝑠

𝜕 (ℎ𝑠𝑉𝑎)
𝜕𝑥

= −i𝑎𝜔

(∑︁
𝑏

β0𝑃
𝑎−𝑏𝑃𝑏 −𝑄𝑎

)
, (2.21a)

−i𝑎𝜔𝑈𝑎 + 1
ℎ𝑠

𝜕𝑃𝑎

𝜕𝑠
=

1
ℎ𝑠

𝜕𝑄𝑎

𝜕𝑠
, −i𝑎𝜔𝑉𝑎 + 𝜕𝑃𝑎

𝜕𝑥
=

𝜕𝑄𝑎

𝜕𝑥
. (2.21b)

We now proceed to eliminate the transverse velocities. Since we are neglecting 𝑂 (𝑀3) or smaller
terms, we can form an expression for 𝑉𝑎 in terms of the other acoustic variables:

𝑉𝑎 =
1

i𝑎𝜔
𝜕

𝜕𝑥
(𝑃𝑎 −𝑄𝑎) , with 𝑄𝑎 =

1
2

∑︁
𝑏

(
𝑃𝑎−𝑏𝑃𝑏 −𝑈𝑎−𝑏𝑈𝑏 + 𝜕𝑥𝑃

𝑎−𝑏𝜕𝑥𝑃𝑏

(𝑎 − 𝑏)𝑏𝜔2

)
, (2.22)

where 𝜕𝑥 denotes 𝜕/𝜕𝑥 and the error in this expression for 𝑄𝑎 is 𝑂 (𝑀3). Since our eventual
goal is to obtain ODEs in 𝑠 for spatial-mode coefficients of 𝑃𝑎 and 𝑈𝑎, these will be simplest
to implement if we have as few 𝑠-derivatives present as possible. Therefore, we also wish to
eliminate 𝑠-derivatives from the right-hand sides of our equations, using 𝑂 (𝑀) substitutions of
the form

𝜕𝑃𝑎

𝜕𝑠
= i𝑎𝜔ℎ𝑠𝑈𝑎 +𝑂 (𝑀2). (2.23)

Once we have eliminated 𝑉𝑎 and all 𝑠-derivatives at second order, we are left with
𝜕𝑈𝑎

𝜕𝑠
−i𝑎𝜔

[
ℎ𝑠

(
1 + 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
− 𝜅

𝑎2𝜔2
𝜕

𝜕𝑥

]
𝑃𝑎 (2.24a)

= i𝑎𝜔

{
− β0ℎ𝑠

∑︁
𝑏

𝑃𝑎−𝑏𝑃𝑏 +
[
ℎ𝑠

(
1 − 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
+ 𝜅

𝑎2𝜔2
𝜕

𝜕𝑥

]
𝑄𝑎

}
,

𝜕𝑃𝑎

𝜕𝑠
−i𝑎𝜔ℎ𝑠𝑈𝑎 = i𝜔ℎ𝑠

∑︁
𝑏

{
𝑈𝑎−𝑏

[
(𝑎 − 𝑏) − 𝑏

(
1 + 1

𝑏2𝜔2
𝜕2

𝜕𝑥2

)]
𝑃𝑏 + 𝜕𝑥𝑈

𝑎−𝑏𝜕𝑥𝑃𝑏

𝑏𝜔2

}
.

(2.24b)

The other piece of information that needs expression in the coordinate system is the hard-walled
boundary condition 𝒖 · 𝝂± = 0 at 𝑥 = 𝑋±, where 𝝂± is the normal to each duct wall (distinct from
the Frenet-Serret normal 𝒏). The duct walls are defined by the equations 𝑥 − 𝑋± (𝑠) = 0, so the
normals are 𝝂± = ∇(𝑥 − 𝑋±) = 𝒆𝑥 − (𝜕𝑠𝑋±/ℎ𝑠)𝒆𝑠 . The boundary condition is then given by the
equation

𝑈𝑎 𝜕𝑋±
𝜕𝑠

= ℎ𝑠𝑉
𝑎 =

ℎ𝑠

i𝑎𝜔
𝜕

𝜕𝑥
(𝑃𝑎 −𝑄𝑎) at 𝑥 = 𝑋± (𝑠). (2.25)
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2.4.2. The coordinate system in three dimensions
Later on we will be projecting the equations onto a basis of functions representing the modes of a
straight duct. The construction of such a basis is much easier and cleaner with separable boundary
conditions in three dimensions, so here we drop the asymmetry about the centreline to focus on
three-dimensional ducts with circular cross-sections; a constraint most brass instruments adhere
to. However, as well as bending in the plane, the duct may now twist out of it, complicating the
Frenet–Serret frame.

As shown in figure 1 (right), we begin once more with a centreline 𝒒(𝑠), but this time have a
single radius function 𝑅(𝑠). The longitudinal coordinate is 𝑠 as before, and two more variables
span the plane perpendicular to the centreline tangent. The Frenet–Serret frame now has an extra
vector and a corresponding extra scalar

d𝒒
d𝑠

= 𝒕,
d𝒕
d𝑠

= 𝜅𝒏,
d𝒏
d𝑠

= −𝜅 𝒕 + 𝜏𝒃,
d𝒃
d𝑠

= −𝜏𝒏. (2.26)

Here 𝒃 is the binormal (satisfying 𝒃 = 𝒕 × 𝒏) and 𝜏 is the torsion. We now introduce polar
coordinates 𝑟 ∈ [0, 𝑅(𝑠)] and 𝜃 ∈ [0, 2π) in the transverse plane, but rather than rotating this
polar frame in line with the rotation of the basis vectors 𝒏 and 𝒃, we leave an extra degree
of freedom here by also introducing a phase shift, or twist, 𝜃0 (𝑠), that may vary along the
duct (following the work of Germano 1982), so that any point 𝒙 is given in these coordinates by

𝒙 = 𝒒(𝑠) + 𝑟 cos(𝜃 − 𝜃0)𝒏 + 𝑟 sin(𝜃 − 𝜃0)𝒃. (2.27)

The corresponding metric d𝒙 · d𝒙 is then

d𝒙 · d𝒙 = d𝑠2
[
1 − 𝜅𝑟 cos(𝜃 − 𝜃0) + 𝑟2 (𝜃′0 − 𝜏)2

]
+ d𝑟2 + 𝑟2d𝜃2 − 2d𝑠d𝜃𝑟2 (𝜃′0 − 𝜏). (2.28)

An orthogonal coordinate system requires that there be no cross-term differentials in the metric:
to achieve this, following Germano (1982), we utilise the extra degree of freedom and take 𝜃′0 = 𝜏.
The Lamé coefficients and (𝑠, 𝑟, 𝜃) basis vectors can then be written as

ℎ𝑠 = 1 − 𝜅𝑟 cos(𝜃 − 𝜃0), ℎ𝑟 = 1, ℎ𝜃 = 𝑟, 𝒆𝑠 = 𝒕, (2.29a)
𝒆𝑟 = 𝒏 cos(𝜃 − 𝜃0) + 𝒃 sin(𝜃 − 𝜃0), 𝒆𝜃 = −𝒏 sin(𝜃 − 𝜃0) + 𝒃 cos(𝜃 − 𝜃0). (2.29b)

We decompose the velocity in the same way as before, but now with an extra coordinate, i.e.
𝑼𝑎 = 𝑈𝑎𝒆𝑠 +𝑉𝑎𝒆𝑟 +𝑊𝑎𝒆𝜃 . The mass and momentum equations (2.16) become

−i𝑎𝜔𝑃𝑎 + 1
ℎ𝑠

𝜕𝑈𝑎

𝜕𝑠
+ 1
𝑟ℎ𝑠

𝜕 (𝑟ℎ𝑠𝑉𝑎)
𝜕𝑟

+ 1
𝑟ℎ𝑠

𝜕 (ℎ𝑠𝑊𝑎)
𝜕𝜃

= i𝑎𝜔

(
−β0

∑︁
𝑏

𝑃𝑎−𝑏𝑃𝑏 +𝑄𝑎

)
, (2.30a)

−i𝑎𝜔𝑈𝑎 + 1
ℎ𝑠

𝜕𝑃𝑎

𝜕𝑠
=

1
ℎ𝑠

𝜕𝑄𝑎

𝜕𝑠
, −i𝑎𝜔𝑉𝑎 + 𝜕𝑃𝑎

𝜕𝑟
=

𝜕𝑄𝑎

𝜕𝑟
, −i𝑎𝜔𝑊𝑎 + 1

𝑟

𝜕𝑃𝑎

𝜕𝜃
=

1
𝑟

𝜕𝑄𝑎

𝜕𝜃
.

(2.30b)

Proceeding as before, we find expressions for 𝑉𝑎 and 𝑊𝑎 in terms of 𝑃𝑎 and 𝑈𝑎:

𝑉𝑎 =
1

i𝑎𝜔
𝜕

𝜕𝑟
(𝑃𝑎 −𝑄𝑎), 𝑊𝑎 =

1
i𝑎𝜔𝑟

𝜕

𝜕𝜃
(𝑃𝑎 −𝑄𝑎), (2.31)

with

𝑄𝑎 =
1
2

∑︁
𝑏

(
𝑃𝑎−𝑏𝑃𝑏 −𝑈𝑎−𝑏𝑈𝑏 + ∇t𝑃

𝑎−𝑏 · ∇t𝑃
𝑏

(𝑎 − 𝑏)𝑏𝜔2

)
, (2.32)

where we have introduced the transverse gradient ∇t = 𝒆𝒓𝜕𝑟 + 1
𝑟
𝒆𝜽𝜕𝜃 which acts only in the 𝑟, 𝜃
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plane normal to the centreline. We also define, for any function 𝑓 , the Frenet–Serret normal-
derivative (FSND)

𝜕 𝑓

𝜕𝒏
= 𝒏 · ∇ 𝑓 = cos(𝜃 − 𝜃0)

𝜕 𝑓

𝜕𝑟
− sin(𝜃 − 𝜃0)

𝑟

𝜕 𝑓

𝜕𝜃
. (2.33)

This is a useful quantity, since it allows us to commute the transverse gradient with the longitudinal
scale factor ℎ𝑠 , as in,

∇t · (ℎ𝑠∇t 𝑓 ) =
(
ℎ𝑠∇

2
t − 𝜅𝜕𝒏

)
𝑓 and ∇2

t (ℎ𝑠 𝑓 ) =
(
ℎ𝑠∇

2
t − 2𝜅𝜕𝒏

)
𝑓 . (2.34)

This contrasts with the two-dimensional derivation, where both the transverse gradient and the
FSND collapse onto the 𝑥-derivative (the former as a vector in the 𝒆𝑥 direction, the latter as a
scalar). Once we have eliminated the 𝑠-derivatives as before, we then have

𝜕𝑈𝑎

𝜕𝑠
− i𝑎𝜔

[
ℎ𝑠

(
1 +

∇2
t

𝑎2𝜔2

)
− 𝜅

𝑎2𝜔2
𝜕

𝜕𝒏

]
𝑃𝑎

= i𝑎𝜔

{
− β0ℎ𝑠

∑︁
𝑏

𝑃𝑎−𝑏𝑃𝑏 +
[
ℎ𝑠

(
1 −

∇2
t

𝑎2𝜔2

)
+ 𝜅

𝑎2𝜔2
𝜕

𝜕𝒏

]
𝑄𝑎

}
,

(2.35a)

𝜕𝑃𝑎

𝜕𝑠
− i𝑎𝜔ℎ𝑠𝑈𝑎 = i𝜔ℎ𝑠

∑︁
𝑏

{
𝑈𝑎−𝑏

[
(𝑎 − 𝑏) − 𝑏

(
1 +

∇2
t

𝑏2𝜔2

)]
𝑃𝑏 + ∇t𝑈

𝑎−𝑏 · ∇t𝑃
𝑏

𝑏𝜔2

}
.

(2.35b)

Finally, the hard-walled boundary condition in three dimensions requires the normal 𝝂, which
we calculate similarly to earlier as 𝝂 = ∇(𝑟 − 𝑅) |𝑟=𝑅 = (𝒆𝑟 − 𝑅′𝒆𝑠/ℎ𝑠) |𝑟=𝑅. Plugging this into
𝒖 · 𝝂 |𝑟=𝑅 = 0 gives

𝑅′𝑈𝑎 |𝑟=𝑅 = (ℎ𝑠𝑉𝑎) |𝑟=𝑅 =

[
ℎ𝑠

i𝑎𝜔
𝜕

𝜕𝑟
(𝑃𝑎 −𝑄𝑎)

] ����
𝑟=𝑅

. (2.36)

2.5. Spatial modal decomposition
At this point, we expand each of 𝑃𝑎 and 𝑈𝑎 in terms of a basis of straight-duct modes. We will
ultimately be solving for the coefficients of the series expansions, which will only depend on 𝑠

with all transverse variation being contained within the basis functions.

2.5.1. The spatial modes in two dimensions
𝑃𝑎 and 𝑈𝑎 are expanded as

𝑃𝑎 =

∞∑︁
𝛼=0

𝑃𝑎
𝛼 (𝑠)𝜓𝛼 (𝑠, 𝑥), 𝑈𝑎 =

∞∑︁
𝛼=0

𝑈𝑎
𝛼 (𝑠)𝜓𝛼 (𝑠, 𝑥), (2.37)

with every 𝜓𝛼 satisfying
• Helmholtz’s equation with eigenvalue 𝜆𝛼 in two dimensions (scaling out the eigenvalue’s

𝑋-dependence for convenience)
𝜕2𝜓𝛼

𝜕𝑥2 + 𝜆2
𝛼

𝑋2 𝜓𝛼 = 0, (2.38)

• a normalisation condition

⟨𝜓𝛼, 𝜓𝛽⟩ = 𝛿𝛼𝛽 , where ⟨𝜓𝛼, 𝜓𝛽⟩ :=
∫ 𝑋+

𝑋−

𝜓𝛼𝜓𝛽 d𝑥, (2.39)

• and a Neumann condition on the duct walls (which ensures that the requisite Sturm-Liouville
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properties hold, while maintaining consistency with the no-penetration condition)

𝜕𝜓𝛼

𝜕𝑥

����
𝑥=𝑋±

= 0. (2.40)

Solutions to the Helmholtz equation are quantised by the boundary conditions, giving solutions

𝜓𝛼 =
𝐶𝛼√
𝑋

cos
[
𝜆𝛼 (𝑥 − 𝑋−)

𝑋

]
, 𝜆𝛼 = 𝛼π, (2.41)

for 𝛼 ∈ N0, with 𝐶𝛼 to be
√

2 − 𝛿𝛼0 ensuring orthonormality.

2.5.2. The spatial modes in three dimensions
In three dimensions, the expansions are similarly written as

𝑃𝑎 =

∞∑︁
𝛼=0

𝑃𝑎
𝛼 (𝑠)𝜓𝛼 (𝑠, 𝑟, 𝜃), 𝑈𝑎 =

∞∑︁
𝛼=0

𝑈𝑎
𝛼 (𝑠)𝜓𝛼 (𝑠, 𝑟, 𝜃), (2.42)

with every 𝜓𝛼 satisfying the Helmholtz equation in the circular cross-section with Neumann
boundary conditions. This gives

𝜓𝛼 =
𝐶𝛼√
π𝑅

J𝑝 (𝜆𝛼𝑟/𝑅) cos
(
𝑝𝛼 (𝜃 − 𝜃0) −

𝜉𝛼π

2

)
, (2.43)

where 𝐶𝛼 ensures orthonormalization, 𝜆𝛼 is the eigenvalue, 𝑝𝛼 ∈ N0 gives the azimuthal order
and 𝜉𝛼 ∈ {0, 1} effectively provides both sine and cosine solutions. Defining 𝑗 ′𝑝𝑞 to be the 𝑞th

zero of J′𝑝 (𝑥), we have 𝜆𝛼 = 𝑗 ′𝑝𝛼𝑞𝛼
for 𝑞𝛼 ∈ N0 independent of 𝜉𝛼. Hence, modes are given

by a bĳection between 𝛼 ∈ N0 and (𝑝𝛼, 𝑞𝛼, 𝜉𝛼) ∈ N0 × N0 × {0, 1}, although modes that are
identically zero are skipped (such as (0, 0, 1), (2, 0, 0), (2, 0, 1), (4, 0, 0), etc). For orthonormality,
we have

⟨𝜓𝛼, 𝜓𝛽⟩ =
∫ 𝑅

0

∫ 2π

0
𝜓𝛼𝜓𝛽 𝑟d𝑟d𝜃 ⇒ 𝐶𝛼 =


��J0 ( 𝑗 ′0𝑞𝛼

)
��−1

, 𝑝𝛼 = 0,(√︄
1
2

[
1 − 𝑝𝛼

2

𝑗′𝑝𝛼𝑞𝛼
2

] ��J𝑝𝛼
( 𝑗 ′𝑝𝛼𝑞𝛼

)
��)−1

, 𝑝𝛼 ≠ 0.

(2.44)

2.6. Spatial projection and notation
Now that we have defined the spatial basis functions, we follow McTavish & Brambley (2019) in
projecting the governing equations (2.24, 2.25) or (2.35, 2.36) onto the spatial modal basis (2.41)
or (2.43) to form an infinite set of ODEs for the coefficients 𝑈𝑎

𝛼 and 𝑃𝑎
𝛼. This is achieved by

multiplying each of the governing equations by the spatial basis functions 𝜓𝛽 and integrating
across a duct cross-section, using the orthogonality of the spatial basis functions in the process.
The result is simplified greatly using a compact notation, which we now introduce.

For each 𝑎 ∈ N, let 𝒑𝑎 denote the vector of coefficients 𝑃𝑎
𝛼 for 𝛼 ∈ N0, and similarly let 𝒖𝑎

denote the vector of coefficients𝑈𝑎
𝛼. We use Roman letters as superscripts for the temporal Fourier

modal decomposition, and Greek letters as subscripts for the spatial modal decomposition. For
each of these vectors, matrices M with coefficients M𝛼𝛽 act in the normal way,(

M 𝒚
)
𝛼
=

∞∑︁
𝛽=0

M𝛼𝛽𝑦𝛽 . (2.45)

For the weakly nonlinear terms, we define a quadratic operator M with coefficients M𝛼𝛽𝛾 , which

Rapids articles must not exceed this page length



11

acts on vectors 𝒚 and 𝒛 as (
M⟨𝒚, 𝒛⟩

)
𝛼
=

∞∑︁
𝛽=0

∞∑︁
𝛾=0

M𝛼𝛽𝛾𝑦𝛽𝑧𝛾 . (2.46)

We also use the operator shorthand(
M +N⟨I ,A⟩

)
⟨𝒚, 𝒛⟩ = M⟨𝒚, 𝒛⟩ + N⟨𝒚,A𝒛⟩. (2.47)

Unlike in McTavish & Brambley (2019), here we choose a decomposition into matrix and
quadratic operators that depends only on the modal basis and not on the variable 𝑠 or any physical
parameters. This allows for a unified approach to both the two- and three-dimensional cases listed
above, and, since physical quantities such as curvature 𝜅 occur explicitly, the effects of the physical
quantities can be isolated and better understood. The algebra behind the manipulations needed to
get to the governing equations is given in appendix A. In two dimensions, this results in[

d
d𝑠

+ 𝑋 ′ (𝑠)
2𝑋 (𝑠)W + 𝑋 ′

− (𝑠)
𝑋 (𝑠) Ã

]
𝒖𝑎 (𝑠)

− i𝑎𝜔

[ (
I − 𝚲2

𝑎2𝜔2𝑋 (𝑠)2

) (
(1 − 𝜅(𝑠)𝑋− (𝑠))I − 𝜅(𝑠)𝑋 (𝑠)A

)
− 𝜅(𝑠)Ã
𝑎2𝜔2𝑋 (𝑠)

]
𝒑𝑎 (𝑠)

=
i𝑎𝜔√︁
𝑋 (𝑠)

∑︁
𝑏

{
− β0

(
(1 − 𝜅(𝑠)𝑋− (𝑠))I − 𝜅𝑋 (𝑠)A

)
⟨ 𝒑𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩

+
[ (

I + 𝚲2

𝑎2𝜔2𝑋 (𝑠)2

) (
(1 − 𝜅(𝑠)𝑋− (𝑠))I − 𝜅(𝑠)𝑋 (𝑠)A

)
+ 𝜅(𝑠)Ã
𝑎2𝜔2𝑋 (𝑠)

]
⟨ 𝒑𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩ − ⟨𝒖𝑎−𝑏 (𝑠), 𝒖𝑏 (𝑠)⟩

2

+


(
I + 𝚲2

𝑎2𝜔2𝑋 (𝑠)2

) (
(1 − 𝜅(𝑠)𝑋− (𝑠))I𝜆 − 𝜅(𝑠)𝑋 (𝑠)A𝜆

)
+ 𝜅 (𝑠) Ã𝜆

𝑎2𝜔2𝑋 (𝑠)

2(𝑎 − 𝑏)𝑏𝜔2𝑋 (𝑠)2

 ⟨ 𝒑
𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩

}
,

(2.48a)[
d
d𝑠

− 𝑋 ′ (𝑠)
2𝑋 (𝑠)W T − 𝑋 ′

− (𝑠)
𝑋 (𝑠) ÃT

]
𝒑𝑎 (𝑠) − i𝑎𝜔

[
(1 − 𝜅(𝑠)𝑋− (𝑠))I − 𝜅(𝑠)𝑋 (𝑠)A

]
𝒖𝑎 (𝑠)

=
1√︁
𝑋 (𝑠)

∑︁
𝑏

{(
𝑋 ′
+ (𝑠)
𝑋 (𝑠) W

+ − 𝑋 ′
− (𝑠)
𝑋 (𝑠) W−

)
⟨𝒖𝑎−𝑏 (𝑠), 𝒖𝑏 (𝑠)⟩

+ i𝜔

[(
(1 − 𝜅(𝑠)𝑋− (𝑠))I − 𝜅(𝑠)𝑋 (𝑠)A

) 〈
I , (𝑎 − 𝑏)I − 𝑏

(
I − 𝚲2

𝑏2𝜔2𝑋 (𝑠)2

)〉
+ (1 − 𝜅(𝑠)𝑋− (𝑠))I𝜆 − 𝜅(𝑠)𝑋 (𝑠)A𝜆

𝑏𝜔2𝑋 (𝑠)2

]
⟨𝒖𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩

}
,

(2.48b)

where the matrices and tensors are defined in appendix A.1 and are independent of 𝑠.
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Likewise, in three dimensions, using the derivation in appendix A.2, we arrive at(
d
d𝑠

+ 𝑅′ (𝑠)
𝑅(𝑠) W + 𝜏(𝑠)H

)
𝒖𝑎 (𝑠) (2.49a)

− i𝑎𝜔

[(
I − 𝚲2

𝑎2𝜔2𝑅(𝑠)2

)
(I − 𝜅(𝑠)𝑅(𝑠)A) − 𝜅(𝑠)Ã

𝑎2𝜔2𝑅(𝑠)

]
𝒑𝑎 (𝑠)

=
i𝑎𝜔

√
π𝑅(𝑠)

∑︁
𝑏

{[ (
I + 𝚲2

𝑎2𝜔2𝑅(𝑠)2

)
(I − 𝜅(𝑠)𝑅(𝑠)A) + 𝜅(𝑠)Ã

𝑎2𝜔2𝑅(𝑠)

]
× ⟨ 𝒑𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩ − ⟨𝒖𝑎−𝑏 (𝑠), 𝒖𝑏 (𝑠)⟩

2

+
[ (

I + 𝚲2

𝑎2𝜔2𝑅 (𝑠)2

) (
I𝜆 − 𝜅(𝑠)𝑅(𝑠)A𝜆

)
+ 𝜅 (𝑠) Ã𝜆

𝑎2𝜔2𝑅 (𝑠)

2(𝑎 − 𝑏)𝑏𝜔2𝑅(𝑠)2

− β0 (I − 𝜅(𝑠)𝑅(𝑠)A)
]
⟨ 𝒑𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩

}
,(

d
d𝑠

− 𝑅′ (𝑠)
𝑅(𝑠) W T − 𝜏(𝑠)HT

)
𝒑𝑎 (𝑠) − i𝑎𝜔

(
I − 𝜅(𝑠)𝑅(𝑠)A

)
𝒖𝑎 (𝑠) (2.49b)

=
1

√
π𝑅(𝑠)

∑︁
𝑏

{
𝑅′ (𝑠)
𝑅(𝑠) W⟨𝒖𝑎−𝑏 (𝑠), 𝒖𝑏 (𝑠)⟩ + i𝜔

[
(I − 𝜅(𝑠)𝑅(𝑠)A)

×
〈
I , (𝑎 − 𝑏)I − 𝑏

(
I − 𝚲2

𝑏2𝜔2𝑅(𝑠)2

) 〉
+ I𝜆 − 𝜅(𝑠)𝑅(𝑠)A𝜆

𝑏𝜔2𝑅(𝑠)2

]
⟨𝒖𝑎−𝑏 (𝑠), 𝒑𝑏 (𝑠)⟩

}
,

where again the matrices and tensors are defined in appendix A.2 and are independent of 𝑠.
The equations have a structure common to both two and three dimensions, and can be written

compactly (as detailed in appendix B) as

d
d𝑠

(
𝒖𝑎

𝒑𝑎

)
= L𝑎

(
𝒖𝑎

𝒑𝑎

)
+

∑︁
𝑏

N 𝑎𝑏

〈(
𝒖𝑎−𝑏

𝒑𝑎−𝑏

)
,

(
𝒖𝑏

𝒑𝑏

)〉
, (2.50)

in terms of square blocks L𝑎 =:
(
L𝑎

1 L𝑎
2

L𝑎
3 L𝑎

4

)
, and ‘cubic blocks’

N 𝑎𝑏

〈(
𝒖𝑎−𝑏

𝒑𝑎−𝑏

)
,

(
𝒖𝑏

𝒑𝑏

)〉
=

(
N 𝑎𝑏

1 ⟨𝒖𝑎−𝑏, 𝒖𝑏⟩ + N 𝑎𝑏
6 ⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩

N 𝑎𝑏
3 ⟨𝒖𝑎−𝑏, 𝒖𝑏⟩ + N 𝑎𝑏

7 ⟨𝒖𝑎−𝑏, 𝒑𝑏⟩

)
, (2.51)

where the equivalent terms N 𝑎𝑏
2 ≡ N 𝑎𝑏

4 ≡ N 𝑎𝑏
5 ≡ N 𝑎𝑏

8 ≡ 0. We recall that 𝑃−𝑎
𝛼 = 𝑃𝑎∗

𝛼 and
that 𝑃0

𝛼 = 0 by our earlier assumptions of real variables and vanishing time-averages. Note that,
as expected, the weakly nonlinear terms will mix the effects of different frequencies. We will
now work in terms of these quantities, so that everything we do will apply in both two and three
dimensions.

In summary, the governing equations are (2.48) in two dimensions and (2.49) in three
dimensions, and can be combined and written as (2.50). Greater numerical efficiency has been
achieved through the transferral of 𝑠-dependence from matrices to the scalars multiplying them
(since this allows the matrices to be pre-calculated rather than requiring recalculation at each
step). Upper (Roman) indices are Fourier series modenumbers while lower (Greek) indices are
duct modenumbers.
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3. Solution of the Governing Equations
Here, we solve the above governing equations using a multi-modal method, inspired by Félix
& Pagneux (2001) and McTavish & Brambley (2019). We first truncate the number of spatial
modes to 𝛼max and the number of temporal modes to 𝑎max, before introducing the concept of an
admittance which relates velocities to pressures.

3.1. Admittance
The admittance𝑌 , and its inverse the impedance 𝑍 , characterise the relationship between acoustic
pressure and acoustic velocity. The admittance and impedance are defined here as

𝒖𝑎 = Y 𝑎 𝒑𝑎 +
∑︁
𝑏

Y𝑎𝑏⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩, 𝒑𝑎 = Z 𝑎𝒖𝑎 +
∑︁
𝑏

Z𝑎𝑏⟨𝒖𝑎−𝑏, 𝒖𝑏⟩. (3.1)

The first of these relations may be used to eliminate the velocity from the governing equa-
tions (2.50), which results in a Riccati-style equation for the 𝑠-evolution of the admittance,

dY 𝑎

d𝑠
= −Y 𝑎L𝑎

3 Y 𝑎 + L𝑎
1 Y 𝑎 − Y 𝑎L𝑎

4 + L𝑎
2 , (3.2a)

dY𝑎𝑏

d𝑠
= − Y 𝑎N 𝑎𝑏

3 ⟨Y 𝑎−𝑏,Y 𝑏⟩ − Y 𝑎N 𝑎𝑏
7 ⟨Y 𝑎−𝑏, I⟩ + N 𝑎𝑏

1 ⟨Y 𝑎−𝑏,Y 𝑏⟩ + N 𝑎𝑏
6

− Y𝑎𝑏

[
− L𝑎

1 + Y 𝑎L𝑎
3 +

〈
L𝑎−𝑏

4 + L𝑎−𝑏
3 Y 𝑎−𝑏, I

〉
+

〈
I ,L𝑏

4 + L𝑏
3 Y 𝑏

〉 ]
.

(3.2b)

These equations will be solved to find the admittance, which encodes the acoustic properties of
the duct. Once the admittance is known, the acoustic pressure may be solved for by substituting
the admittance definition (3.1) back into the governing equations (2.50), giving

d 𝒑𝑎

d𝑠
=

(
L𝑎

3 Y 𝑎 + L𝑎
4
)
𝒑𝑎 +

∑︁
𝑏

(
L𝑎

3Y
𝑎𝑏 + N 𝑎𝑏

3 ⟨Y 𝑎−𝑏,Y 𝑏⟩ + N 𝑎𝑏
7 ⟨Y 𝑎−𝑏, I⟩

)
⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩,

(3.3)
with the velocities then given by the known admittance and pressure from the admittance
definition (3.1). In order to solve the first order equation (3.2), a known value of the admittance
must be given as a boundary condition at some point in the duct, for example, at the outlet.
We next investigate special values of the admittance that might be used as boundary conditions
for (3.2).

3.2. Invariant admittances
We consider admittances that solve (3.2) and are constant in 𝑠, therefore having a vanishing 𝑠-
derivative. Physically, these invariant solutions represent the admittances of ducts for which no 𝑠

position is distinguishable from any other. Such a duct would have a constant radius, curvature and
torsion, leaving the possibilities of: (a) an infinite straight duct; (b) an annulus (two dimensions)
or torus (three dimensions); and (c) an infinite helical duct. Because of the quadratic term in the
evolution equation for Y 𝑎, there is more than one constant solution for a given geometry. Here, a
‘+’ solution will be constructed from the set of eigenvalues that represent waves either decaying or
propagating in the positive 𝑠-direction, and a ‘−’ solution will be constructed from the eigenvalues
representing growth in the positive 𝑠-direction or propagation in the negative 𝑠-direction. These
are respectively the positive and negative characteristic admittances. We denote by (𝒖𝑎±, 𝒑𝑎±)
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disturbances propagating in only the positive + or negative − directions, and define

𝒖𝑎± = Y 𝑎± 𝒑𝑎± +
∑︁
𝑏

Y𝑎𝑏±⟨ 𝒑 (𝑎−𝑏)±, 𝒑𝑏±⟩, (3.4a)

𝒑𝑎± = Z 𝑎±𝒖𝑎± +
∑︁
𝑏

Z𝑎𝑏±⟨𝒖 (𝑎−𝑏)±, 𝒖𝑏±⟩. (3.4b)

The linear characteristic impedances Z 𝑎± are the inverses of Y 𝑎±; the nonlinear characteristic
impedances are found by the weakly-nonlinear inversion ruleZ𝑎𝑏± = −Z 𝑎±Y𝑎𝑏±⟨Z (𝑎−𝑏)±,Z 𝑏±⟩.

3.2.1. Straight-duct characteristic admittances
This computation will be done in the general case in order to lay the groundwork for the
curvature/torsion cases, where the diagonalisation is less trivial.

For a straight duct, the matrix L𝑎 is constant, and given by setting 𝜅 ≡ 𝜏 ≡ 𝑋 ′ ≡ 𝑅′ ≡ 0,

L
𝑎
=

(
0 L

𝑎

2
L
𝑎

3 0

)
, (3.5)

where L
𝑎

2 is diagonal and L
𝑎

3 is proportional to the identity. We seek a solution to

d
d𝑠

(
𝒖𝑎

𝒑𝑎

)
= L

𝑎
(
𝒖𝑎

𝒑𝑎

)
, (3.6)

which takes the form 𝒑𝑎 = 𝒄𝑎 exp(𝛾𝑎𝑠), with 𝛾𝑎 an eigenvalue and 𝒄𝑎 the corresponding
eigenvector of L

𝑎
. We use the fact that for invertible matrices A and D,

det
(
A B
C D

)
= det A det

(
D − CA−1B

)
= det D det

(
A − BD−1C

)
. (3.7)

With this in mind, we know that the characteristic equation reads

0 = det
[
L
𝑎
− 𝛾𝑎

(
I 0
0 I

)]
= det

( (
𝛾𝑎

)2I − L
𝑎

3 L
𝑎

2

)
. (3.8)

Because L
𝑎

3 L
𝑎

2 is diagonal, we may directly read off the eigenvalues. Since we have truncated
to 𝛼max spatial modes, and therefore both L

𝑎

2 and L
𝑎

3 are 𝛼max × 𝛼max, we see that there are
precisely 𝛼max solutions for 𝛾𝑎2, of which some are positive and some negative (depending on
the frequency 𝜔, since this is determining whether the modes are cut-on or cut-off). Thus, there
will be a set of distinct eigenvalues {𝛾𝑎

𝛼}
𝛼max
𝛼=0 that are exclusively in R− or iR+, corresponding

to forward-decaying or forward-propagating modes respectively. These will be used to build the
positive characteristic admittance; each will meanwhile have a mirror image in either R+ or iR− ,
used to construct the negative characteristic admittance.

We may now partition the eigenvectors into two sets, those corresponding to {𝛾𝑎
𝛼}

𝛼max
𝛼=0 and

those corresponding to {−𝛾𝑎
𝛼}

𝛼max
𝛼=0 , denoted 𝒄𝑎±. Splitting them (as we have split L

𝑎
) into upper

and lower vectors (𝒄𝑎±𝛼,1, 𝒄
𝑎±
𝛼,2), and eliminating the upper vectors, we get

L
𝑎

3 L
𝑎

2 𝒄
𝑎±
𝛼,2 = 𝛾𝑎

𝛼
2𝒄𝑎±𝛼,2. (3.9)

Because 𝒄𝑎+𝛼,2 and 𝒄𝑎−𝛼,2 satisfy the same equation, we can choose 𝒄𝑎+𝛼,2 = 𝒄𝑎−𝛼,2 = 𝒄𝑎𝛼,2; further to

this, we may note that (3.8) implies that L
𝑎

3 L
𝑎

2 = 𝚪
𝑎2

, where 𝚪
𝑎

is a diagonal matrix with entries
given by the elements of {𝛾𝑎

𝛼}
𝛼max
𝛼=0 . Defining a matrix C

𝑎
with each column being a different 𝒄𝑎𝛼,2

(arranged so as to match the ordering of 𝚪
𝑎
), we then see that

L
𝑎

3 L
𝑎

2 C
𝑎
= C

𝑎
𝚪
𝑎2

= C
𝑎
L
𝑎

3 L
𝑎

2 . (3.10)
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Since C
𝑎

commutes with a diagonal matrix with unique entries, it too must be diagonal, so having
not yet normalised the eigenvectors, we can now simply choose C

𝑎
= I . The admittance is then

simple to construct from substituting it into the lower block of (3.6), getting L
𝑎

3 Y
𝑎±

= ±𝚪𝑎
. In

both two and three dimensions, L
𝑎

3 = i𝑎𝜔I , so we have

Y
𝑎±

= ± 1
i𝑎𝜔

𝚪
𝑎
=: ±Y

𝑎
. (3.11)

For clarity, the admittances in two dimensions have the following explicit expression

Y
𝑎±
𝛼𝛽 = ±i𝛿𝛼𝛽 exp

{
− iπ

4

[
sgn

(
1 − 𝜆2

𝛼

𝑎2𝜔2𝑋2

)
+ 1

]} √︄����1 − 𝜆2
𝛼

𝑎2𝜔2𝑋2

����, (3.12)

and the three-dimensional case is identical, only with an 𝑅 in place of every 𝑋 . We can then easily
write down the definition of the straight-duct cut-off frequency for each mode in two and three
dimensions

𝜔𝑎
𝛼 (𝑠) =

{
𝜆𝛼

𝑎𝑋 (𝑠) 2D,
𝜆𝛼

𝑎𝑅 (𝑠) 3D,
(3.13)

and note that 𝜔𝑎
𝛼 increases with the spatial modenumber, while having the opposite relationship

with the temporal modenumber.
In order to calculate the nonlinear characteristic admittances, we substitute the linear charac-

teristic admittances into (3.2b), and look for fixed points

0 = − Y
𝑎
N 𝑎𝑏

7 ⟨Y
𝑎−𝑏

, I⟩ + N 𝑎𝑏

1 ⟨Y
𝑎−𝑏

,Y
𝑏
⟩ + N 𝑎𝑏

6

∓ Y𝑎𝑏± [
Y

𝑎
L
𝑎

3 + ⟨L
𝑎−𝑏
3 Y

𝑎−𝑏
, I⟩ + ⟨I ,L

𝑏

3 Y
𝑏
⟩
]
.

(3.14)

If we note that the square-bracketed quantity is actually equal to 𝚪
𝑎 + ⟨𝚪𝑎−𝑏

, I⟩ + ⟨I , 𝚪𝑏⟩, a sum of
three diagonal matrices each acting on a different component, then we may simply divide through
by this, pointwise, for each entry of Y𝑎𝑏±

, getting

Y𝑎𝑏±
𝛼𝛽𝛾 = ±

(
N 𝑎𝑏

1 ⟨Y
𝑎−𝑏

,Y
𝑏
⟩ + N 𝑎𝑏

6 − Y
𝑎
N 𝑎𝑏

7 ⟨Y
𝑎−𝑏

, I⟩
)
𝛼𝛽𝛾

𝛾𝑎
𝛼 + 𝛾𝑎−𝑏

𝛽 + 𝛾𝑏𝛾

=: ±Y𝑎𝑏

𝛼𝛽𝛾 . (3.15)

Obviously we will run into problems if the denominator of this turns out to be zero: this would
constitute a resonant triad (Protas, Kang & Bustamante 2024, see, e.g.). Empirically, we do not
seem to run into this problem in the straight-duct case, but for the more complicated characteristic
admittances that follow there seems to be no such guarantee. We avoid the problem of singular
entries in the characteristic admittance by excising them from the matrix when a resonant triad is
found, but proper work on the avoidance/physical significance of them should at some point be
conducted.

3.2.2. Other characteristic admittances
If instead we were to consider the characteristic admittance of an infinitely long duct with
constant curvature, the eigenvalues would remain on the real/imaginary axes, but the eigenvector
matrices would cease to be diagonal, resulting in a slightly more complicated expression for
the corresponding characteristic admittance Y̆ 𝑎. Including torsion in addition would cause the
eigenvalues to bifurcate into the complex plane: as a result the torsional-duct characteristic
admittances Ỹ 𝑎± would no longer satisfy Ỹ 𝑎+ = −Ỹ 𝑎− . For completeness, expressions for these
quantities are derived explicitly in appendix C, although here we will only make use of the straight
duct admittance above.
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3.3. Splitting operators
By using the characteristic admittances defined above, we can split waves into forward- and
backward-going parts,

𝒖𝑎 = 𝒖𝑎+ + 𝒖𝑎− , 𝒑𝑎 = 𝒑𝑎+ + 𝒑𝑎− . (3.16)

We may perform this decomposition from the total pressure by defining linear and nonlinear
splitting operators S𝑎± and S𝑎𝑏±,

𝒑𝑎± = S𝑎± 𝒑𝑎 +
∑︁
𝑏

S𝑎𝑏±⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩; (3.17)

a similar procedure could be defined for the velocity. Assuming we have picked a characteristic
admittance, we now proceed to calculate these splitting operators in terms of that characteristic
admittance. Restricting ourselves to the linear case for a moment, we have

𝒑𝑎± = 𝒑𝑎 − 𝒑𝑎∓ = 𝒑𝑎 − Z 𝑎∓ (𝒖𝑎 − 𝒖𝑎±) = (I − Z 𝑎∓Y 𝑎) 𝒑𝑎 + Z 𝑎∓Y 𝑎± 𝒑𝑎±, (3.18)

so that
𝒑𝑎± = (I − Z 𝑎∓Y 𝑎±)−1 (I − Z 𝑎∓Y 𝑎) 𝒑𝑎 = S𝑎± 𝒑𝑎, (3.19)

which may equivalently be written more compactly as

S𝑎± = (Y 𝑎± − Y 𝑎∓)−1 (Y 𝑎 − Y 𝑎∓). (3.20)

If the above equations are expanded to second order in terms of S𝑎±, we find S𝑎𝑏± to be

S𝑎𝑏± = (Y 𝑎± − Y 𝑎∓)−1
(
Y𝑎𝑏 − Y𝑎𝑏+⟨S (𝑎−𝑏)+,S𝑏+⟩ − Y𝑎𝑏− ⟨S (𝑎−𝑏)− ,S𝑏−⟩

)
. (3.21)

The decomposition (3.16) may worry some readers, in that our model is weakly nonlinear but
here we assume a linear decomposition, i.e. that 𝒑𝑎 = 𝒑𝑎+ + 𝒑𝑎− . This also worried the authors.
A weakly nonlinear correction term to this decomposition may be added, 𝒑𝑎 = 𝒑𝑎+ + 𝒑𝑎− +∑

𝑏 C𝑎𝑏⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩, and a similar term to the 𝒖𝑎 decomposition. Simple algebra then shows that
any arbitrary choice of these correction terms is mathematically consistent, and so here we take
them to be zero; indeed, taking the cross-term to be non-zero would break the interpretation
of a decomposition into upstream and downstream modes. Note that weak nonlinearity is still
accounted for in the decomposition through the S𝑎𝑏± terms in equation (3.17). In fact, this
may not be surprising when we consider that the acoustic disturbance is a sum over modes,
𝑝′ =

∑
𝑎,𝛼 𝑃𝑎

𝛼𝜓𝛼e−i𝑎𝜔𝑡 , which is necessarily a linear decomposition at each axial duct location,
and that the separation into downstream- and upstream-propagating sound just involves rewriting
this modal expansion as two sums.

3.4. Pressure Boundary Condition
When we come to solve these equations, we prescribe the admittances at the duct’s outlet,
amounting to a radiation condition, before solving, in order, the equations (3.2a) and (3.2b). After
this, we know everything about the global radiative properties of the duct, and correspondingly we
have only a first-order ODE (3.3) to solve for the pressure. For musical instruments, the pressure
perturbation is prescribed by the musician, who disturbs the internal air column of the instrument
at the inlet, meaning that the pressure is specified at the entrance (taken here to be at 𝑠 = 0) and
solved forwards from there.

One matter that is not entirely clear from a mathematical point of view is that of the musician’s
interaction with reflecting waves. Should the musician’s playing amount to a prescription of the
forward-going pressure only, meaning that waves reflected back impact without consequence on
the source? Or should it rather be a prescription of the total pressure, meaning that the musician
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is adapting to the impact of the reflections they themselves generated? In brass instruments, it
is thought that a feedback loop is formed between backward-going waves and the player’s lip
response to them: however, this complication is avoided here for simplicity, and we choose only
to specify the forward-going pressure at the inlet, 𝑝+ (𝒙, 𝑡) |𝑠=0, with corresponding coefficient
𝒑𝑎+ (0), and convert this (for the purpose of solving the equation) to the total pressure with the
inverse splitting operator,

𝒑𝑎 (0) = (S𝑎+)−1

[
𝒑𝑎+ (0) −

∑︁
𝑏

S𝑎𝑏+
〈
(S (𝑎−𝑏)+)−1 𝒑 (𝑎−𝑏)+ (0), (S𝑏+)−1 𝒑𝑏+ (0)

〉]
. (3.22)

The simplest boundary condition for the pressure is that of a sinusoidal piston source at 𝑠 = 0, given
by 𝑝+ (𝒙, 𝑡) |𝑠=0 = 𝑀 sin(𝜔𝑡) (where we recall 𝑀 is the perturbation Mach number, introduced in
section 2.1), and projected onto the coordinate basis as

𝑃𝑎+
𝛼 (0) =

𝑀
√︁
𝐴cs (0)sgn(𝑎)𝛿 |𝑎 | ,1𝛿𝛼0

2i
, (3.23)

where 𝐴cs (0) = 𝑋 (0) in two dimensions and π𝑅(0)2 in three. We can also consider non-plane
modes. In two dimensions, for a variable-width straight duct (with width variation symmetric
about the centreline), symmetric and antisymmetric modes are uncoupled, so there is a family of
pressure distributions inaccessible to the plane-wave inlet condition. The ‘fundamental’ member
of this family is the first antisymmetric mode, so we can consider a variant on condition (3.23)
where the 𝛿𝛼0 is replaced with a 𝛿𝛼1.

This effect is amplified for any variable-width straight-duct in three dimensions, where modes
of different azimuthal wavenumber are uncoupled, resulting in uncountably many mutually-
inaccessible families of pressure distributions. The ‘fundamental’ of each therefore represents
another possible inlet condition, meaning we replace the 𝛿𝛼0 with a 𝛿𝑝𝛼𝑛𝛿𝑞𝛼1 for any 𝑛 of our
choice.

3.5. Numerical Method
3.5.1. Truncation
When solving this infinite set of coupled ODEs numerically, we must truncate both the number
of spatial and temporal modes used. If we pick maximum values of each, we then have spatial
modes ranging from 0 to 𝛼max and temporal modes ranging from −𝑎max to 𝑎max. This would mean
that we have (𝛼max + 1) (2𝑎max + 1) equations to solve for 𝑃𝑎

𝛼, (𝛼max + 1)2 (2𝑎max + 1) for Y 𝑎
𝛼𝛽

and (𝛼max + 1)3 (2𝑎max + 1)2 for Y𝑎𝑏
𝛼𝛽𝛾

. However, by our previous assumptions we are neglecting
zero modes, and all of our acoustic quantities being real implies that 𝑃−𝑎

𝛼 = 𝑃𝑎∗
𝛼 and 𝑈−𝑎

𝛼 = 𝑈𝑎∗
𝛼 ,

resulting in (𝛼max + 1)𝑎max independent equations for 𝑃𝑎
𝛼 and (𝛼max + 1)2𝑎max for Y 𝑎

𝛼𝛽
.

A slightly messier calculation at this point puts the number of independent entries of Y𝑎𝑏
𝛼𝛽𝛾

at
(𝛼max+1)3 (2𝑎max−1)𝑎max. More entries may yet be discarded though, since discrete convolutions
behave strangely upon truncation; if 𝑎 and 𝑏 range from −𝑎max to 𝑎max then 𝑎 − 𝑏 ranges from
−2𝑎max to 2𝑎max, so as a consequence, at each timestep, for every triple (𝛼, 𝛽, 𝛾), there is an 𝑎𝑏

matrix Y𝑎𝑏
𝛼𝛽𝛾

of which the only calculable entries form a banded matrix (with bandwidth 𝑎max),
resulting in 𝑎max (𝑎max + 1) lost entries. Having exploited the conjugacy property already, this
means a subtraction of 𝑎max (𝑎max+1)/2 entries from the total, resulting in 3(𝛼max+1)3𝑎max (𝑎max−
1)/2 independent entries for the nonlinear admittance.

3.5.2. Numerical solver
We use a 4th order Runge–Kutta method to integrate the admittance and pressure equations in 𝑠.
Unless otherwise specified, we use the adaptive-step solver ode45 in Matlab, although for one
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case in section 4.4 we use a fixed-step solver, as that proves more accurate in the neighbourhood
of a cusp in the duct diameter.

3.5.3. Numerical Viscosity
One of the pitfalls of truncation is the pooling of energy at higher modes. This can be countered
by employing a numerical viscosity, which we do by subtracting a new term 𝐸𝑎 from the right-
hand-side of the pressure equation (3.3). Here, we take this to be

𝐸𝑎 = −𝜈0
|𝑎 |𝜔β0𝑀

1 + 𝑀β0𝜔𝑠
log

(
1 − |𝑎 | − 1

𝑎max

)
𝑃𝑎

0 ∼ 𝜈0
|𝑎 |2𝜔β0𝑀

𝑎max
𝑃𝑎

0 , (3.24)

where 𝜈0 is a positive scalar determining how great an effect we want the viscosity to have. The
second approximation here is in the limit of small 𝑠 relative to the shock formation distance
1/𝑀β0𝜔, and with 1 ≪ |𝑎 | ≪ 𝑎max (where energy pooling starts to occur). This choice of
numerical viscosity is informed by the truncation error for a sawtooth plane wave in a one-
dimensional duct, and is discussed further in section 4.1 below.

The physical molecular viscosity could also instead be considered as a starting point, and
comparing the result of one-dimensional numerical sawtooth stabilisation with its physical
counterpart, we find that the first-order correction term agrees with the 𝑎2 factor from the
second approximation, but also that the combined shear and bulk viscosities 4𝜇/3 + 𝜁 must be
approximately equal to 2β0𝑀/𝑎max𝜔. This calculation may be found in appendix D.

3.5.4. Alternative numerical damping
Numerical instabilities can also arise in linear problems. If a node occurs in the pressure (scenarios
involving this are discussed in section 4.5), this causes a singularity in the admittance. Such
singularities may be avoided (or ‘dampened’) by the addition of a small imaginary part to the
frequency 𝜔, which corresponds to a sound source slowly exponentially growing in time, and
therefore a wave pattern that slowly exponentially decays in space away from the source. This
technique is borrowed from stability analysis (e.g. Briggs 1964; Bers 1983), where adding an
imaginary part to the frequency 𝜔 is used to guarantee a causal solution.

3.6. Modal resolution
The following test cases require different numbers of modes depending on what physics is being
considered. For linear acoustics, spatial modes are the only limiting factor: when comparing with
pre-existing linear work, we use the previous resolution as a benchmark (e.g. 𝛼max = 30 for figure
4), but when comparing with results, we pick a new standard (taking 𝛼max = 50 for figures 7, 8,
9, 10). In all of these cases the absence of nonlinearity allows us to set 𝑎max = 1, and unoptimised
Matlab code run on a standard laptop finishes in the order of seconds.

Where nonlinearity comes in, memory requirements are likely to exceed that of a standard
laptop, although all results here have been computed on a single desktop with 128 GiB of
memory. For most of these computations (i.e. figures 3 and 6-16) spatial resolution is necessary,
so we take 𝑎max = 10 and 𝛼max = 10, and computations take on the order of tens of minutes. For
figure 2, we consider only plane waves in a straight duct, so we can take 𝛼max = 0 and 𝑎max = 100;
while this does not exceed the memory limit, the calculation now takes of the order of half a day
to compute using a single core.

The numerical procedure converges as the number of temporal and spatial modes is increased,
and the truncations above are sufficient for accurate results in all of the cases presented here.
A demonstration of the numerical convergence with the number of modes is provided for a
constant-curvature bend in three dimensions in section 4.3 below.
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4. Results
We now consider applying the procedure above to a number of test cases. The numerical Matlab
code to compute these cases is provided in the supplementary material.

4.1. A straight duct of constant diameter
The simplest test geometry in either two or three dimensions is that of a straight duct with constant
diameter. For a plane piston source, the equations are simplified greatly, both by the absence of
curvature and width-variation terms, and also by the collapsing of the spatial mode vectors onto
a single scalar component. The admittance equations are then solved trivially, since the boundary
condition is a constant solution, giving

Y 𝑎
00 (𝑠) = 1, Y𝑎𝑏

000 (𝑠) = − 1
2
√
𝐴cs

(
β0 +

𝑎 − 2𝑏
𝑎

)
∀𝑠. (4.1)

This holds in both two and three dimensions, and we write 𝐴cs for the area of the duct cross-section
so that we can work in generality. Plugging these into the pressure equation, we get (again in both
cases, once we substitute the value of I000)

d𝑃𝑎
0

d𝑠
= i𝑎𝜔𝑃𝑎

0 + i𝜔
2
√
𝐴cs

∑︁
𝑏

[
− 𝑎β0 + (𝑎 − 2𝑏)

]
𝑃𝑎−𝑏

0 𝑃𝑏
0 , (4.2)

but the second term in the square bracket here vanishes upon summation. Since the zero mode
𝜓0 does not depend on 𝑠 for a straight duct, we can multiply through by it, getting an equation for
Fourier coefficients

d𝑃𝑎

d𝑠
= i𝑎𝜔𝑃𝑎 − i𝑎𝜔β0

2

∑︁
𝑏

𝑃𝑎−𝑏𝑃𝑏 . (4.3)

This equation was solved up to shock formation by Fubini (1935) (for any boundary conditions
both periodic and odd in t), in the form of a sine series for the pressure

𝑝

𝑀
=

∑︁
𝑎

𝐵𝑎 sin[𝑎𝜔(𝑡 − 𝑠)]; 𝐵𝑎 =
2
𝑎𝜎

J𝑎 (𝑎𝜎), (4.4)

where 𝜎 = 𝑀β0𝜔𝑠 is the arc-length normalised by the shock formation distance. Fay (1931)
found a post-shock-formation solution in the form of a sawtooth wave,

𝐵𝑎 =
2

𝑎(1 + 𝜎) , (4.5)

valid for 𝜎 ⪆ 3. Blackstock (1966) matched these two solutions with the following two terms

𝐵𝑎 =
2
𝑎π

𝑃sh +
2

𝑎π𝜎

∫ π

Φsh

cos 𝑎(Φ − 𝜎 sinΦ)dΦ, (4.6)

where the shock amplitude 𝑃sh and phase Φsh satisfy

𝑃sh = sin(𝜎𝑃sh), Φsh = 𝜎 sinΦsh. (4.7)

For 𝜎 < 1, the only solution for (𝑃sh,Φsh) is (0, 0), so the first term vanishes and the second
becomes the Fubini solution. As 𝜎 grows greater than 1, two more solutions appear either side
of 0; the relevant solutions here are the positive ones. For 𝜎 ⪆ 5π/2 more solutions appear; we
remain interested from this point in the minimal positive solution for each of 𝑃sh and Φsh. Since
Φsh converges to π from below, the second term tends to 0, while the first term behaves like the
Fay solution.

The numerical viscosity used here, described in section 3.5.3 above, is justified by considering
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the truncation error of a sawtooth wave when substituted into equation (4.3). The sawtooth wave
as derived in Fay (1931) has Fourier coefficients given by

𝑃𝑎 =
i𝑀𝑒i𝑎𝜔𝑠

𝑎(1 + 𝜎) (4.8)

so the terms missing if we truncate the nonlinear term in equation (4.3) to a finite sum are then

𝐸𝑎 =
i𝑎𝜔β0

√
𝐴cs

2

∞∑︁
𝑏=−∞,
𝑏≠0,𝑎

𝑃𝑎−𝑏𝑃𝑏 − i𝑎𝜔β0
√
𝐴cs

2

sgn(𝑎)𝑎max∑︁
𝑏=𝑎−sgn(𝑎)𝑎max ,

𝑏≠0,𝑎

𝑃𝑎−𝑏𝑃𝑏

= − i𝜔β0
√
𝐴cs𝑀

2𝑒i𝑎𝜔𝑠

(1 + 𝜎)2

( ∞∑︁
𝑏=−∞,
𝑏≠0,𝑎

−
sgn(𝑎)𝑎max∑︁

𝑏=𝑎−sgn(𝑎)𝑎max ,
𝑏≠0,𝑎

)
𝑎

2(𝑎 − 𝑏)𝑏

(4.9)

where the limits on the second sum ensure that for both positive and negative 𝑏, |𝑎 − 𝑏 | may
never exceed 𝑎max. By carefully splitting the summands into partial fractions, which make the
sums easier to compute, we gain a form which has integral bounds that we use to calculate the
numerical viscosity. This is done in detail in appendix D, and results (with the inclusion of the
viscous scale factor 𝜈0) in equation (3.24).

We can compare our numerics with this. This can be done in both two and three dimensions;
figure 2 compares various modes in the two-dimensional case, for a simulation with 1 spatial
mode (since no spatial coupling is induced for this geometry anyway) and 100 temporal modes.
As one would expect, good matches are achieved for the lower (dominant) modes, while for
higher modes the numerical solutions undershoot at first and over-compensate later on. We have
achieved matches of equal quality with the code in three dimensions.

Eliminating spatial variation in favour of higher temporal modes is a useful special case because
it allows for the calibration of the numerical viscosity. Figure 2 was created with 𝜈0 = 1, because
higher scale factors than this place far too much damping on the higher modes, while lower factors
allow instabilities to build up much more quickly. In light of this, all other nonlinear calculations
take 𝜈0 = 1 as well.

4.2. Constant curvature in two dimensions
In two dimensions, McTavish & Brambley (2019) considered linear and nonlinear propagation
around a constant-width bend, first computed in the linear case by Félix & Pagneux (2001).
This provides a test case for the combination of curvature and nonlinearity. Figure 3 reproduces
figure 7 of McTavish & Brambley (2019), with all of the same parameters, i.e. (for constant duct
width 𝑋) a bend of curvature 8/5𝑋 located at a distance 2𝑋 downstream of a plane piston source
of frequency 3/𝑋 , with truncation taken at 10 spatial modes and 10 temporal modes, plotted in
the linear regime and nonlinearly for 𝑀 = 0.05, 0.10 and 0.15. Good agreement is observed.

4.3. Constant curvature in three dimensions
In three dimensions, no published work exists that can be used to test the combined effects of
curvature and nonlinearity, but in the linear case Félix & Pagneux (2002) provides an example that
may be tested against. Here, for constant duct radius 𝑅, a plane piston source of frequency 2.4/𝑅
is placed at the mouth of a bend of curvature 4/5𝑅, and a cross-section through the half-plane
is plotted alongside the outlet’s circular cross-section. Comparing figure 4 with figure 2 of Félix
& Pagneux (2002), we again see good agreement. Truncation was taken at 30 spatial modes to
match their calculation, with the usual 1 temporal mode in the absence of nonlinearity.

For this geometry, we also follow Félix & Pagneux (2002) in the inclusion of a convergence
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Figure 2: Comparison of numerically-calculated mode amplitudes (dashed) with those
predicted by the Blackstock solution (solid), using the code in two dimensions. (a) shows
modes 1 through 7, while (b) shows 10 through 70. Truncation was taken at 𝛼max = 0 and

𝑎max = 100.

study for the spatial modes. As well as their two definitions of the error involving integration
along a surface, we also calculate a volumetric error, which behaves similarly. The reference
solution 𝑝ref was calculated here with 𝛼max = 50 and 𝑎max = 1. Figure 5 shows the result. As with
Félix & Pagneux (2002), there is uneven behaviour due to the different effects of higher azimuthal
or radial resolution; nonetheless, for error metrics 𝜖1 and 𝜖3 the inclusion of more modes never
causes the error to grow, and even for error metric 𝜖2 the solution is clearly still converging as
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Figure 3: Pressure (normalised to the source amplitude) in a bend identical to the one used
in McTavish & Brambley (2019), with a plane piston source of frequency 3/𝑋 , for (a)

linear, (b) 𝑀 = 0.05, (c) 0.10, and (d) 0.15. Truncation was taken at 𝛼max = 𝑎max = 10. An
animated version of this figure is available as Movie 1 in the supplementary material.
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Figure 4: Pressure (normalised to the source amplitude) in a bend identical to the one used
in Félix & Pagneux (2002), with a plane piston source of frequency 2.4/𝑅, plotted both

through the midplane and across the duct outlet in the linear regime. Truncation was taken
at 𝛼max = 30 and 𝑎max = 1. An animated version of this figure is available as Movie 2 in

the supplementary material.
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Figure 5: Numerical convergence in a three-dimensional planar bend for three definitions
of the error, detailed in equation (4.10). 𝑎max = 1, and so the number of modes is 𝛼max + 1.

more modes are included. The error definitions are

𝜖1 =

√√√√∫ 2π/𝜔
𝑡=0

∫ 𝑠𝑑

𝑠=0

∫ 𝑅

𝑟=0
[
ℎ𝑠 ∥𝑝 − 𝑝ref∥2

] π
𝜃=0 d𝑟d𝑠d𝑡∫ 2π/𝜔

𝑡=0

∫ 𝑠𝑑

𝑠=0

∫ 𝑅

𝑟=0
[
ℎ𝑠 ∥𝑝ref∥2

] π
𝜃=0 d𝑟d𝑠d𝑡

, (4.10a)

𝜖2 =

√√√√∫ 2π/𝜔
𝑡=0

∫ 2π
𝜃=0

∫ 𝑅

𝑟=0 𝑟 ∥𝑝 − 𝑝ref∥2 |𝑠=𝑠𝑑d𝑟d𝜃d𝑡∫ 2π/𝜔
𝑡=0

∫ 2π
𝜃=0

∫ 𝑅

𝑟=0 𝑟 ∥𝑝ref∥2 |𝑠=𝑠𝑑d𝑟d𝜃d𝑡
, (4.10b)

𝜖3 =

√√√√∫ 2π/𝜔
𝑡=0

∫ 2π
𝜃=0

∫ 𝑅

𝑟=0

∫ 𝑠𝑑

𝑠=0 𝑟ℎ𝑠 ∥𝑝 − 𝑝ref∥2 |𝑠=𝑠𝑑d𝑠d𝑟d𝜃d𝑡∫ 2π/𝜔
𝑡=0

∫ 2π
𝜃=0

∫ 𝑅

𝑟=0

∫ 𝑠𝑑

𝑠=0 𝑟ℎ𝑠 ∥𝑝ref∥2 |𝑠=𝑠𝑑d𝑟d𝑠d𝜃d𝑡
. (4.10c)

In figure 6 the same geometry has a plane piston source of frequency 𝜔 = 2.4/𝑅 prescribed in
the total pressure at the top left, for various Mach numbers. We see good agreement both with
the published linear work of Félix & Pagneux (2002), where evenly-spaced peaks and troughs
travel around the outside of the bend, and also with the unpublished nonlinear work of McTavish
(2018), where the contours are deformed by the steepening of the peaks as the Mach number is
increased. To match the latter calculation, 10 spatial modes and 10 temporal modes were used.

4.4. An exponential horn
The exponential horn is a convenient geometry: if an approximation is made allowing only plane
waves to propagate, an analytical solution (Webster 1919) exists, with the growth rate of the
horn acting to dampen oscillations. The geometry is best parametrised across both two and three
dimensions by specifying the growth exponent of the horn’s cross-sectional area, i.e. by setting

𝐴cs (𝑠) =
{
𝐴cs (0) exp(2𝑚𝑠) 𝑠 ∈ [0, 𝑠o],
𝐴cs (0) exp(2𝑚𝑠o) 𝑠 > 𝑠o.

(4.11)

so that the radial growth factor in two dimensions is doubled relative to that in three. The section of
duct with 𝑠 > 𝑠o forms the infinite straight duct providing the characteristic admittance boundary
condition Y 𝑎 = Y 𝑎+ at the outlet 𝑠 = 𝑠0. Since we are only interested in plane waves, the (scalar)
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Figure 6: Pressure (normalised to the source amplitude) in a bend identical to the one used
in Félix & Pagneux (2002), with a plane piston source of frequency 2.4/𝑅, for (a) linear,

(b) 𝑀 = 0.02, (c) 0.05, and (d) 0.10. Truncation was taken at 𝛼max = 𝑎max = 10. An
animated version of this figure is available as Movie 3 in the supplementary material.

linear admittance equation (in the variable radius region) becomes

d𝑌 𝑎

d𝑠
= −i𝑎𝜔(𝑌 𝑎)2 − 2𝑚𝑌 𝑎 + i𝑎𝜔, (4.12)

with the boundary condition at 𝑠 = 𝑠o being 𝑌 𝑎 = 1 (which also holds for all 𝑠 > 𝑠o). Solving this
ODE, we find that

𝑌 𝑎 =
𝑛𝑎 cos 𝑛𝑎 (𝑠o − 𝑠) − (i𝑎𝜔 − 𝑚) sin 𝑛𝑎 (𝑠o − 𝑠)
𝑛𝑎 cos 𝑛𝑎 (𝑠o − 𝑠) − (i𝑎𝜔 + 𝑚) sin 𝑛𝑎 (𝑠o − 𝑠) , (4.13)

for 𝑠 ⩽ 𝑠o. Here 𝑛𝑎 is a quantity satisfying 𝑛2
𝑎 = 𝑎2𝜔2 − 𝑚2, which is real in the case of cut-on

modes and imaginary otherwise. Having found 𝑌 𝑎, it may now be plugged into the equation for
the pressure, which in the plane-wave case reduces to

d𝑃𝑎
0

d𝑠
=

{
(𝑚 + i𝑎𝜔𝑌 𝑎)𝑃𝑎

0 𝑠 ⩽ 𝑠o,

i𝑎𝜔𝑃𝑎
0 𝑠 > 𝑠o,

(4.14)

with our initial condition being

𝑃𝑎
0 =

𝑀
√︁
𝐴cs (0)
2i

𝛿 |𝑎 |1sgn(𝑎), (4.15)
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Figure 7: Pressure (normalised to the source amplitude) in an exponential horn identical to
the one used in McTavish & Brambley (2019), with a plane piston source of frequency
0.95𝜔1

1 (𝑠o) = 0.95π/𝑋 (𝑠o), for (a) linear, (b) linear, quarter of a cycle later. Truncation
was taken at 𝛼max = 50 and 𝑎max = 1. An animated version of this figure is available as

Movie 4 in the supplementary material.

or alternatively

𝑃𝑎
0 =

𝑀
√︁
𝐴cs (0)
2i

𝛿 |𝑎 |1sgn(𝑎) 𝑛𝑎 cos 𝑛𝑎𝑠o − (i𝑎𝜔 + 𝑚) sin 𝑛𝑎𝑠o
𝑛𝑎 cos 𝑛𝑎𝑠o − i𝑎𝜔 sin 𝑛𝑎𝑠o

(4.16)

if we wish to specify only the forward-going pressure. Solving this equation, with condition
(4.15), the pressure is

𝑃𝑎
0 (𝑠) =

𝑀sgn(𝑎)𝛿 |𝑎 | ,1
2i

√︁
𝐴cs (0)

𝑛𝑎 cos 𝑛𝑎 (𝑠o − 𝑠) − (i𝑎𝜔 + 𝑚) sin 𝑛𝑎 (𝑠o − 𝑠)
𝑛𝑎 cos 𝑛𝑎𝑠o − (i𝑎𝜔 + 𝑚) sin 𝑛𝑎𝑠o

, (4.17)

and if we specify the forward-going pressure instead, the 𝑚 disappears from the bracketed term
in the denominator.

To test our code on this geometry, we follow McTavish & Brambley (2019) in considering a
two-dimensional horn of inlet width 𝑋i, length 4.5𝑋i and width increase ratio of 16, and a plane
piston source of frequency of 0.95𝜔1

1 (𝑠o) = 0.95π/𝑋 (𝑠o) for the inlet condition on the total
pressure (where we recall the definition of the cutoff frequency from equation (3.13)). With 50
spatial modes and 1 temporal mode (since with no nonlinearity there is no temporal coupling) a
good match is observed with their results in the linear case (figure 7).

Further to this, a more direct comparison with Webster’s analytical approximation is shown in
figure 8, where the RMS pressure at the centreline is plotted (in contrast to McTavish & Brambley
(2019), the analytical solution is calculated for the whole domain, including the straight-duct
section post-outlet). We achieve a very good match by restricting our calculation to plane waves
only: this is achieved with a fixed (and very small)-stepsize method, since the discontinuity in 𝑋 ′

at the outlet is severe enough to cause errors in a variable stepsize solver like ode45. In contrast,
the 50-mode calculation disagrees very obviously with the Webster approximation, showing that
the Webster approximation will necessarily fail to capture the spatial coupling effects of a duct
bell.

4.5. An inverse exponential horn in two dimensions
If we consider an ‘inverse’ exponential horn, that is, one that narrows rather than widening, we
introduce the possibility of nodes. This is because waves are now reflecting to a much greater
degree, so cancellations can occur. This effect is most readily observed with antisymmetric
waves (and in fact cannot occur in a straight duct when considering only plane waves). Since
antisymmetric waves are uncoupled from symmetric ones in a straight duct, there are grounds
to consider the derivation of an analogous Webster-like solution to the first antisymmetric mode.
We will solve only the two-dimensional problem here, since the three-dimensional problem is
complicated by a greater number of ways to break azimuthal symmetry. As with the Webster
solution, this discussion also covers only linear acoustics in this geometry.
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Figure 8: RMS pressure along the centreline of the exponential horn for two different
modal resolutions, compared with the plane-wave approximation (Webster 1919). Mode
coupling induced by the variation in duct width causes the plane-wave approximation to

be an inaccurate one for this geometry.

When the Webster solution is derived, we consider a single-mode truncation of equation (2.50)
for straight ducts of variable width (whose centreline is always in the middle of the duct, so
𝑋+ = −𝑋− = 𝑋/2) in the linear regime. As such, we have no N 𝑎𝑏, and L𝑎 (which for 𝑎 = 1 we
call L) reads

L =
©­«
− 𝑋′

2𝑋

(
W − Ã

)
i𝜔

(
I − 𝚲2

𝜔2𝑋2

)
i𝜔I 𝑋′

2𝑋

(
W𝑇 − Ã𝑇

)ª®¬ . (4.18)

The non-coupling between symmetric and antisymmetric waves is encoded here by the fact that
the matrix W − Ã has non-zero entries only where the column index and row index are either
both even (antisymmetric) or both odd (symmetric). In particular, this results in the following
2-mode truncation of equation (2.50)

d
d𝑠

©­­­«
𝑢0
𝑢1
𝑝0
𝑝1

ª®®®¬ =

©­­­«
− 𝑋′

2𝑋

(
1 0
0 2

)
i𝜔

(
1 0
0 1 − π2

𝜔2𝑋2

)
i𝜔

(
1 0
0 1

)
𝑋′

2𝑋

(
1 0
0 2

) ª®®®¬
©­­­«
𝑢0
𝑢1
𝑝0
𝑝1

ª®®®¬ . (4.19)

Solving the symmetric problem (𝑢0, 𝑝0) results in the Webster Horn Equation, while solving
the antisymmetric problem (𝑢1, 𝑝1) results in the following equation for 𝑝1 (from which we
henceforth drop the subscript 1, as with 𝑢1)

d2𝑝

d𝑠2 −
[
4𝑚2 − 𝜔2 + π2

𝑋2
i

e4 |𝑚 |𝑠

]
𝑝 = 0, (4.20)

where for inlet width 𝑋i we have now substituted in the two-dimensional inverse exponential
horn definition 𝑋 := 𝑋ie−2 |𝑚 |𝑠 . If we use the substitution 𝜎 = πe2 |𝑚 |𝑠/2|𝑚 |𝑋i, this reduces to the
modified Bessel equation

𝜎2 d2𝑝

d𝜎2 + 𝜎
d𝑝
d𝜎

− (𝜈2 + 𝜎2)𝑝 = 0, (4.21)

where 𝜈 is defined by 𝜈2 = 1 − 𝜔2/4𝑚2, and takes purely real values or purely imaginary
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Figure 9: Pressure (top, normalised to the source amplitude) inside an inverse exponential
horn, with an antisymmetric source of frequency (5 + 0.01i)/𝑋i, together with the

normalised deviation of the admittance from the characteristic admittance (bottom).
Truncation was taken at 𝛼max = 50 and 𝑎max = 1. An animated version of this figure is

available as Movie 5 in the supplementary material.

values, depending on whether 𝜔 exceeds 2|𝑚 |. This equation has two solutions, I𝜈 (𝜎) and
K𝜈 (𝜎). In appendix E we derive the solution for the pressure in detail, finding that K𝜈 (𝜎)
dominates for most of the duct. Nodes are then found at roots of this function, i.e. roots 𝑠node of
Ki
√

𝜔2/4𝑚2−1 (πe2 |𝑚 |𝑠/2|𝑚 |𝑋i).
We can test our code on this geometry as well. To form a good physical picture of where

the admittance singularities are, we may exploit the lack of coupling between symmetric and
antisymmetric modes in this geometry to eliminate the plane-wave component from the solution
altogether. To do this we make use of the alternative inlet condition mentioned in section
3.4. Figure 9 shows the pressure distribution lined up with a demonstration of the admittance
singularity in this geometry. This was calculated with 50 spatial modes and 1 temporal mode
(since we are testing just linearity here), for a duct of length 4.5𝑋i and decrease ratio of 4. As
mentioned in section 3.5.4 we add a small imaginary part to the frequency to ‘dampen’ any
singularities. The frequency is then (5+ 0.01i)/𝑋i, resulting in a value of Im(𝜈) high enough that
the first root of K𝜈 (𝜎) is within the duct domain, causing a node in the pressure, observable a
little beyond 𝑠 = 0.5.

Figure 10 compares the results of a single-spatial-mode calculation with the 50-mode cal-
culation (the same frequency, and therefore the same stabilising imaginary part, were used on
the single-mode calculation). We find that the coupling is very minimal: while the 1-mode line
matches the analytical solution exactly, the 50-mode line is a lot closer than it was in the case of
the Webster plane-wave solution. We conclude from this that antisymmetric sources induce less
coupling than symmetric plane-wave ones.
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Figure 10: RMS pressure along the wall of the exponential horn for two different modal
resolutions, compared with the analytical solution.

4.6. Curvature and width variation combined
We can use the inverse exponential horn to demonstrate mode coupling. In the linear case, if
we send in an antisymmetric source and the duct is straight, only antisymmetric modes will be
excited. This symmetry can be broken in multiple ways. If nonlinearity is included, higher-order
temporal harmonics will be coupled, and this can include symmetric modes (a physical argument
for this is that the nonlinear terms are quadratic in the pressure, so two odd pressures will multiply
to create an even one). Alternatively symmetric modes of the same temporal order can be picked
up if the originally-straight duct is bent. Symmetric modes can include plane waves, which have
the property of always being cut-on, so we see that for an antisymmetric source of a certain
frequency, propagating waves will only ‘escape’ the duct if a) they are allowed to steepen or b)
the duct is bent.

Figure 11 displays this phenomenon of ‘acoustic leakage’, for the same inverse exponential
horn as in figure 9. An antisymmetric inlet source of frequency 1/𝑋i is used: this ensures that all
non-plane waves are cut-off at the outlet. We see plane-wave tunnelling induced both for a straight
duct with Mach number 0.05, or in the linear regime with a curvature of 0.2/𝑋i. Truncation was
taken at 10 spatial modes and 10 temporal modes for each of these calculations.

While acoustic leakage from an inverse exponential horn does not bear particular application
to brass instruments, it is an interesting object of study in its own right given the potential
wider scope of duct acoustics beyond musical instruments. It is included here as example of a
phenomenon that can now be analysed owing to the present framework.

4.7. Torsion
Our framework allows us to investigate the effects of torsion on both linear and nonlinear acoustics.
To this end, we examine helical ducts of constant wall radius 𝑅 and curvature 𝜅, with various
torsions 𝜏. For each helix, we have a duct centreline given by

𝒒(𝑠) = (𝑎 cos 𝑠, 𝑎 sin 𝑠, 𝑏𝑠), (4.22)

where 𝑎 is the helical radius, 2π𝑏 is the pitch of the helix, and 𝑠 is a transformed arclength. These
are given in terms of 𝜅 and 𝜏 by

𝑎 =
𝜅

𝜅2 + 𝜏2 , 𝑏 =
𝜏

𝜅2 + 𝜏2 , 𝑠 =
√︁
𝜅2 + 𝜏2𝑠. (4.23)
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Figure 11: Pressure (normalised to the source amplitude) for an antisymmetric source of
frequency 1/𝑋i in an inverse exponential horn for (a) linear, straight, (b) 𝑀 = 0.05,
straight, and (c) linear, 𝜅 = 0.2/𝑋i. Truncation was taken at 𝛼max = 𝑎max = 10. An

animated version of this figure is available as Movie 6 in the supplementary material.

The binormal is calculated as 𝒃 =
√
𝜅2 + 𝜏2 (𝑏 sin 𝑠,−𝑏 cos 𝑠, 𝑎). At each point along the

centreline, this vector points upward with a degree of backward tilt parallel to the centreline
to make it perpendicular to the tangent vector. The angle between 𝒃 and the vertical is calculated
with the dot product to be

cos 𝜃𝒃 = 𝒃 · 𝒆𝑧 = 𝑎
√︁
𝜅2 + 𝜏2, (4.24)

so if we wish to know the vertical distance from a point 𝑠0 to the duct wall above, we consider the
hypotenuse of a right-angled triangle with adjacent side of length 𝑅 and an angle of 𝜃𝒃 between.
This distance is therefore

𝑅

cos 𝜃𝒃
=

𝑅
√
𝜅2 + 𝜏2

𝜅
. (4.25)

We also know from the definition of the helix that the vertical distance between point 𝑠0 and point
𝑠0 + 2π (where the centreline next passes over it) is 2π𝑏. Therefore, for non-self-intersection, we
require that 2π𝑏 be greater than twice the vertical centreline-to-wall distance calculated above.



30

This constraint yields the following condition for the helical duct

0 > (𝜏𝑅)6 + 3(𝜅𝑅)2 (𝜏𝑅)4 +
(
3(𝜅𝑅)2 − π2

)
(𝜅𝑅)2 (𝜏𝑅)2 + (𝜅𝑅)6. (4.26)

All of the helical ducts we consider have curvature given by 𝜅𝑅 = 2/3. We consider three torsions:
𝜏𝑅 = 0.16 (just large enough to avoid self-intersection), 𝜏𝑅 = 0.2, and 𝜏𝑅 = 1. All are compared
in the linear case in figure 12, while the second is held fixed for varying Mach number in figure 13.
We use a frequency of 𝜔 = 0.95𝜔1

1 = 0.95 × 1.8412/𝑅 and truncation for all helical calculations
is taken at 10 spatial modes and 10 temporal modes.

Each of these examples shows how torsional coupling causes a planar source to become non-
planar at the duct outlet. It is also clear from figure 12 that (for all of the torsions we consider)
the highest peaks and lowest troughs in the pressure occur on the outside of the helix, which is
consistent with what was observed both in two- and three-dimensional planar bends. Figure 13
shows that when the amplitude is high enough, the peaks and troughs then lose their even spacing
as the wave steepens along the outside of the helix. The effect of the 𝜃0 (𝑠) coordinate twisting due
to the helical coordinate system is less visible in the static images shown in figures 12 and 13, but
is more evident in the animated versions of them shown in Movies 7 and 8 in the supplementary
material; the wave at the outlet is seen to spin as it propagates due to the helical nature of the duct.

4.8. Comparison of two and three dimensions
Width variation should not, by itself, produce significantly different effects between two and three
dimensions, since the same symmetry is being broken in each case. Torsion is only possible
in three dimensions, so does not invite comparison. Therefore, we will concentrate here on the
difference between the effects of curvature in two and three dimensions. We consider a duct of
width 𝑋i = 1 in two dimensions, and radius 𝑅i = 0.5 in three. In each case, there are straight
sections of length 7/4 either side of a right-angled bend with bend radius 5/4. We prescribe a
piston source of frequency 9/2: figure 14 compares the pressure fields in the linear case with
those of Mach number 0.1. In figure 15, we plot the spatially-averaged outlet pressures against
time, as a means of demonstrating the bend’s effect on a piston source. Truncation was taken at
10 spatial modes and 10 temporal modes for each calculation.

We note that while the two cases seem to steepen equally, the effective acoustic length of
the bend differs between them. The three-dimensional outlet pressure is consistently ‘ahead’ of
the two-dimensional outlet pressure for both linear and nonlinear regimes, suggesting that the
effective bend length is longer in two dimensions. It may also be observed that the two-dimensional
calculations exhibit more transverse oscillations than in three dimensions: this is unsurprising,
since that is the only possible plane of oscillation in two dimensions, whereas in three dimensions
there is an entire circular surface of oscillation at each 𝑠.

4.9. Effective acoustic length of a bend
We can also examine the competing effects of curvature and nonlinearity. We calculate the cross-
sectional average pressure two wavelengths along the centreline from the inlet, for a range of
different bend angles and Mach numbers, while keeping the arclength along the centre of the
bend constant. The boundary condition at the inlet ensures that the average pressure across the
inlet will pass upwardly through zero at 𝑡 = π/𝜔, and downwardly at 𝑡 = π/2𝜔. In a straight
duct, the average pressure across a surface two wavelengths along would match this, but curvature
causes a deviation of these upstroke and downstroke crossings, which we call Δ𝑡. We then define
a bend correction factor 𝐵 := 2𝑐Δ𝑡/Δ𝑥, where Δ𝑥 is the difference in arclength between the outer
wall of the duct and the centreline for that particular bend angle. This parameter is equal to 1 for
a wave travelling along the outside of the bend, and -1 for the inside. We can also choose whether
to use the deviation time Δ𝑡 for the upstroke of the wave, or the downstroke. Figure 16 shows
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Figure 12: Linear pressure field (normalised by the Mach number) on the walls of a helical
duct for the three torsions 𝜏𝑅 = 0.16, 0.20 and 1.00, with a plane piston source of

frequency 𝜔 = 0.95𝜔1
1 = 0.95 × 1.8412/𝑅, viewed from two different angles in each case.

Truncation was taken at 𝛼max = 𝑎max = 10. An animated version of this figure is available
as Movie 7 in the supplementary material.

upstroke and downstroke values of 𝐵 for three duct radii. Each data point on these contour plots
is the result of a calculation with 10 spatial modes and 10 temporal modes.

From the upstroke plots we see that for greater bend angles (and correspondingly tighter bends),
nonlinearity plays a bigger role in forcing the wave around the outside of the bend, whereas for
smaller bend angles, the bend angle takes over as the determining parameter. The downstroke
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Figure 13: Pressure field (normalised by the Mach number) on the walls of a helical duct
with torsion 𝜏𝑅 = 0.20, for 𝑀 = 0.05 (a,b), 0.10 (c,d), and 0.15 (e,f), with a plane piston

source of frequency 𝜔 = 0.95𝜔1
1 = 0.95 × 1.8412/𝑅. Truncation was taken at

𝛼max = 𝑎max = 10. An animated version of this figure is available as Movie 8 in the
supplementary material.

plots are less conclusive, but they do exhibit the emergence of a local minimum in 𝐵 as the radius
is varied.
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Figure 14: Forward-going pressure (normalised to the source amplitude) in an extended
bend with a plane piston source of 9/2, for (a) linear, two dimensions, (b) nonlinear, two
dimensions, (c) linear, three dimensions and (d) nonlinear, three dimensions. Truncation

was taken at 𝛼max = 𝑎max = 10. An animated version of this figure is available as Movie 9
in the supplementary material.

5. Conclusions
We have presented a numerically tractable mathematical framework for solving for weakly-
nonlinear acoustics in curved ducts of varying width, along with a number of numerical examples
of its use. The framework unifies both two- and three-dimensional governing equations, and
allows for torsion in three dimensions. The framework is numerically tractable in that it may be
written in terms of large matrices and tensors that are invariant along the duct, unlike previous
work in two dimensions where the large matrices and tensors varied with the duct geometry and
therefore needed computing at each point along the duct (McTavish & Brambley 2019). The
method follows the multi-modal method of Félix & Pagneux (2001, 2002), solving first for the
admittance (a generalized ratio of acoustic velocity to acoustic pressure) throughout the duct
from the outlet to the inlet, and then using this admittance to calculate the acoustic pressure and
velocity from the inlet to the outlet. This has the advantage that the effects of the duct geometry are
encoded in the admittance and may be analyzed independently of the particular acoustic source
used. The unification of two and three dimensions allows for comparison between the two cases
(such as was shown in figure 14).

The method has been validated for a range of duct geometries where there are known analytical
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Figure 15: Forward-going pressure (normalised to the source amplitude), averaged over
the inlet, the outlet in two dimensions, and the outlet in three dimensions, in the linear

regime (a) and for 𝑀 = 0.10 (b). Truncation was taken at 𝛼max = 𝑎max = 10.

solutions or published numerical results. Nonlinear steepening is validated against the Fubini
(1935), Blackstock (1966), and Fay (1931) solutions for a straight duct in section 4.1. Width
variation in the linear case is validated against the Webster (1919) solution for an exponential
horn in section 4.4; this test case highlights the inaccuracy of approximating the full sound field by
a plane wave in Webster’s solution, which can be reproduced in our framework by restricting our
solution to a single spatial mode or relaxed by allowing for many more spatial modes. Curvature
is validated in two dimensions in section 4.2, in the linear regime against a result of Félix &
Pagneux (2001) and in the nonlinear regime against a result for the same geometry of McTavish
& Brambley (2019). The three dimensional equivalent in section 4.3 is validated against a result
of Félix & Pagneux (2002) in the linear regime, and against an unpublished result of McTavish
(2018) in the nonlinear regime. This extensive validation gives confidence that the combination
of width variation, curvature, and nonlinearity is correctly modelled both in the mathematical
framework and in its numerical implementation.

A number of duct geometries have then been investigated numerically. These include a
demonstration of wave leakage, where the inclusion of either slight curvature or slight nonlinearity
can cause waves to propagate through a duct in which they would otherwise have been totally
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Figure 16: Upstroke (left) and downstroke (right) values of 𝐵, for 𝜔𝑋 = 3 (a,b), 3/2 (c,d)
and 3/4 (e,f). Truncation was taken at 𝛼max = 𝑎max = 10.

reflected (section 4.6). Examples with torsion in three dimensions (section 4.7) show plane waves
becoming localized on the outside of the duct curve. The unification of two- and three-dimensional
equations allows for the comparison of the two in section 4.8, showing that between two and three
dimensions, wave steepening appears comparable but the effective acoustic length of a bend is
different.

The effective length of a bend is investigated further in two dimensions in section 4.9. By
considering the time lag in a wave propagating around a bend, a bend correction factor 𝐵 is
introduced, taking the value +1 for a wave propagating around the outside of the bend and −1 for
a wave propagating around the inside of the bend. These results are presented in figure 16, and
suggest that for higher curvature bends nonlinearity plays a bigger role in forcing wave propagation
around the outside of the bend, whereas for lower curvature bends, the curvature takes over as the
determining parameter. This tool could potentially be used in the future to investigate whether
resonant frequencies are likely to change when the sound amplitude is varied.

An obvious motivation of this work was the potential application to sound in brass instruments,
where the brassy sound is caused by nonlinear wave steepening within the instrument. The use
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of the admittance (both the usual linear admittance and its weakly nonlinear extension) makes
the present framework well suited to this, as a duct’s resonances could be investigated by solving
for the admittance without needing to model or specify a sound source at the inlet. Moreover, the
bend correction factor of section 4.9 could be used to investigate whether instruments are likely to
become sharper or flatter when played at louder or quieter volumes, and potentially even whether
an instrument could be designed to have a stable pitch independently of the volume at which it is
played.

The numerical solution for the admittance, and then for the pressure and velocity, is relatively
standard, and future work could consider other methods of numerical solution. As described in
section 3.5, the infinite series of ODEs is truncated to a finite system by specifying a maximum
number of temporal and spatial modes. Since this truncation prevents the cascade of energy to
higher modes and leads to artificial energy accumulating in the highest nontruncated mode, an
artificial viscosity is added to help dissipate energy at higher modes. This artificial viscosity is
akin to the real molecular viscosity of the gas. However, the dominant energy loss mechanism
for acoustics in a duct is friction with the walls, which has been previously modelled using a
fractional derivative approach (see, e.g., Rendón et al. 2010, and references therein); a similar
technique could be investigated for inclusion in the present model. The now finite set of ODEs
is then integrated here using a standard Runge–Kutta method, either with a fixed (RK4) or
adaptive (RK45) method. More sophisticated numerical methods that take note of the Riccati-
style nature of the equations being integrated are also possible. For example, Pagneux (2010) used
a Magnus–Möbius scheme in the linear case to avoid singularities of the admittance caused by
the presence of pressure nodes in the duct. Since the extension of Magnus schemes to nonlinear
equations is possible (Casas & Iserles 2006), potential future research might investigate the use
of a weakly-nonlinear Magnus–Möbius scheme for at least the admittance integration.

In order to calculate the admittance within the duct, a known admittance must be applied, for
example at the duct outlet. In all of the examples presented here, a non-reflecting admittance
representing an infinite straight duct of constant width was used as the outlet admittance, as
discussed in section 3.2. One obvious outlet admittance for a musical instrument would be that
of a duct exiting into an infinite space; such a situation may be modelled in the linear case either
exactly using a Wiener–Hopf technique (Munt 1977) or approximately using an outer duct with
absorbing walls (e.g. Félix, Doc & Boucher 2018), but the authors are not aware of a nonlinear, or
even weakly-nonlinear, equivalent. Both the open duct exit admittance and the directivity pattern
of the far-field radiation would be interesting avenues of future research.

Other possibilities for future research might involve the inclusion of a mean flow within the
duct (e.g. Mangin, Daroukh & Gabard 2023), ducts with acoustically lined walls (e.g. Bi, Pagneux,
Lafarge & Aurégan 2007), the investigation of other nonlinear effects such as resonant triads (e.g.
Protas et al. 2024) and musical dynamics owing to the feedback loop between a musician’s lips
and the reflections from the waves that they generate, or other modal representations that might
yield faster numerical convergence (e.g. Maurel, Mercier & Pagneux 2014).

Supplementary material. Animations of figures 3, 4, 6, 7, 9, and 11–14 are available in the
supplementary movies as Movies 1–9. Matlab source code to generate the results given here is
also available in supplementary material.
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Appendix A. Spatial projection in more detail
A.1. Two-dimensional spatial projection

The goal here is to project equations (2.24) onto the basis of spatial modes (2.41). This is
achieved by multiplying each equation by a mode 𝜓𝛼 and integrating over a duct cross-section.
If the expansions (2.37) are then employed, the acoustic mode coefficients may then be factored
out of the integral, which becomes a matrix with rows in 𝛼 and columns in the expansion dummy
variable 𝛽, dependent only on the local geometry. However, the Neumann boundary condition
(2.40) prevents us from expanding any first-derivatives of acoustical quantities on the boundary,
which means we may not expand second-derivatives of acoustical quantities within integrals, and
must instead use integration-by-parts to remove the 𝑥-derivatives and then expand once it is safe
to so.

If we start with the left-hand side of (2.24a), we get∫ 𝑋+

𝑋−

𝜓𝛼

{
𝜕𝑈𝑎

𝜕𝑠
− i𝑎𝜔

[
ℎ𝑠

(
1 + 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
− 𝜅

𝑎2𝜔2
𝜕

𝜕𝑥

]
𝑃𝑎

}
d𝑥 =

d
d𝑠

(∫ 𝑋+

𝑋−

𝜓𝛼𝑈
𝑎d𝑥

)
︸                    ︷︷                    ︸

1

−
[
𝑋 ′
+ (𝜓𝛼𝑈

𝑎)
����
𝑋+

− 𝑋 ′
− (𝜓𝛼𝑈

𝑎)
����
𝑋−

]
︸                                        ︷︷                                        ︸

2

− i𝑎𝜔
𝑎2𝜔2

[
𝜓𝛼ℎ𝑠

𝜕𝑃𝑎

𝜕𝑥
− 𝜕 (𝜓𝛼ℎ𝑠)

𝜕𝑥
𝑃𝑎 − 𝜅𝜓𝛼𝑃

𝑎

]𝑋+

𝑋−︸                                                         ︷︷                                                         ︸
3

−
∫ 𝑋+

𝑋−

𝜕𝜓𝛼

𝜕𝑠
𝑈𝑎︸   ︷︷   ︸

4

+ i𝑎𝜔
(
ℎ𝑠𝜓𝛼 + 1

𝑎2𝜔2
𝜕2 (𝜓𝛼ℎ𝑠)

𝜕𝑥2 + 𝜅

𝑎2𝜔2
𝜕𝜓𝛼

𝜕𝑥

)
𝑃𝑎︸                                                          ︷︷                                                          ︸

5

d𝑥. (A 1)

Terms 1 , 2 and 4 are the result of bringing the partial 𝑠-derivative on the 𝑈𝑎 outside of the
integral, whereas terms 3 and 5 are the result of removing all of the 𝑥-derivatives from the
𝑃𝑎 via integration-by-parts (in particular, the second-derivative has been removed by a double
i-b-p to produce the first two constituent terms of 3 ). Term 1 is an exact 𝑠-derivative of the
projection of 𝑈𝑎 onto the basis, i.e.

d
d𝑠

(∫ 𝑋+

𝑋−

𝜓𝛼𝑈
𝑎d𝑥

)
=

d
d𝑠

(∫ 𝑋+

𝑋−

𝜓𝛼

∑︁
𝛽

𝑈𝑎
𝛽𝜓𝛽d𝑥

)
=

d
d𝑠

(∑︁
𝛽

𝛿𝛼𝛽𝑈
𝑎
𝛽

)
=

d𝑈𝑎
𝛼

d𝑠
, (A 2)

by mode orthogonality. Term 2 combines with the first term of 3 to form the left-hand side of
the hard-walled boundary condition (2.25), leaving a term that is 𝑂 (𝑀2), while the second two
terms of 3 cancel with one another due to the Neumann condition on the duct modes. Finally,
5 ’s second term, by the Leibniz rule, makes -2 lots of 5 ’s third term added to a term involving

the second-derivative of a spatial mode, which by (2.38) may be turned into multiplication by a
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squared eigenvalue. Thus, expanding into spatial modes, we have∫ 𝑋+

𝑋−

𝜓𝛼

{
𝜕𝑈𝑎

𝜕𝑠
− i𝑎𝜔

[
ℎ𝑠

(
1 + 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
− 𝜅

𝑎2𝜔2
𝜕

𝜕𝑥

]
𝑃𝑎

}
d𝑥

=
∑︁
𝛽

(
𝛿𝛼𝛽

d
d𝑠

−
∫ 𝑋+

𝑋−

𝜕𝜓𝛼

𝜕𝑠
𝜓𝛽d𝑥

)
𝑈𝑎

𝛽 + 1
i𝑎𝜔

[
ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑥

]𝑋+

𝑋−

− i𝑎𝜔
∑︁
𝛽

[(
1 − 𝜆2

𝛼

𝑎2𝜔2𝑋2

) ∫ 𝑋+

𝑋−

ℎ𝑠𝜓𝛼𝜓𝛽d𝑥 − 𝜅

𝑎2𝜔2

∫ 𝑋+

𝑋−

𝜕𝜓𝛼

𝜕𝑥
𝜓𝛽d𝑥

]
𝑃𝑎
𝛽 . (A 3)

Apart from the term involving 𝑄𝑎 (which will be dealt with later), we have integrals, with two
subscripts, summing over their second subscripts with acoustical quantities that have only one
subscript. In other words, this is standard matrix-vector multiplication, so we may drop the sigmas
in employment of the summation convention (for clarity, in all of the expressions henceforth 𝛼 is
the free suffix, while, 𝛽, 𝛾 and 𝛿 are dummy suffices for use in summation). Furthermore, we will
define a shorthand for any mode-integral matrices: the integral of two modes is written as Ψ, with
Greek-letter subscripts denoting the mode-numbers, while bracketed subscripts denote derivatives
of the modes in question (curly brackets are 𝑠-derivatives and square brackets are 𝑥-derivatives,
with a square bracket around all subscripts meaning that this is a boundary term). Finally, any
non-mode functions present in the integral appear in square brackets after the subscripts. This
notation is the same as was used in McTavish & Brambley (2019). For example,

Ψ{𝛼} [𝛽 ] [ 𝑓 (𝑠, 𝑥)] would mean
∫ 𝑋+

𝑋−

𝜕𝜓𝛼

𝜕𝑠

𝜕𝜓𝛽

𝜕𝑥
𝑓 (𝑠, 𝑥)d𝑥. (A 4)

With this notation in hand, the projected left-hand side becomes(
𝛿𝛼𝛽

d
d𝑠

− Ψ{𝛼}𝛽

)
𝑈𝑎

𝛽 + 1
i𝑎𝜔

[
ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑥

]𝑋+

𝑋−

− i𝑎𝜔

[(
𝛿𝛼𝛾 −

𝚲2
𝛼𝛾

𝑎2𝜔2𝑋2

)
Ψ𝛾𝛽 [ℎ𝑠] −

𝜅

𝑎2𝜔2 Ψ[𝛼]𝛽

]
𝑃𝑏
𝛽 = 𝑂 (𝑀2). (A 5)

where 𝚲 is a matrix with entries given by 𝚲𝛼𝛾 = 𝜆𝛼𝛿𝛼𝛾 (no sum).
We now turn to the right-hand side of (2.24a). Its first term projects very easily, giving∫ 𝑋+

𝑋−

−i𝑎𝜔β0ℎ𝑠𝜓𝛼

∑︁
𝑏

𝑃𝑎−𝑏𝑃𝑏d𝑥 = −i𝑎𝜔β0Ψ𝛼𝛽𝛾 [ℎ𝑠]
∑︁
𝑏

𝑃𝑎−𝑏
𝛽 𝑃𝑏

𝛾 , (A 6)

where the Ψ matrix notation has been naturally extended to third-rank tensors, which contract
with acoustical quantities on subscripts 2 and 3. The next term on the right-hand side becomes

i𝑎𝜔
∫ 𝑋+

𝑋−

𝜓𝛼

[
ℎ𝑠

(
1 − 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
+ 𝜅

𝑎2𝜔2
𝜕

𝜕𝑥

]
𝑄𝑎d𝑥

=
i𝑎𝜔
𝑎2𝜔2

[
− 𝜓𝛼ℎ𝑠

𝜕𝑄𝑎

𝜕𝑥
+ 𝜕 (𝜓𝛼ℎ𝑠)

𝜕𝑥
𝑄𝑎 + 𝜅𝜓𝛼𝑄

𝑎

]𝑋+

𝑋−

+ i𝑎𝜔
∫ 𝑋+

𝑋−

𝑄𝑎

[(
1 − 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
(ℎ𝑠𝜓𝛼) −

𝜅

𝑎2𝜔2
𝜕𝜓𝛼

𝜕𝑥

]
d𝑥. (A 7)

This is more-or-less the same manipulation as took place on the left-hand side, only now with
𝑄𝑎 in the place of 𝑃𝑎 and some sign changes. After the same cancellations have been made, and
we switch to the Ψ notation (which requires the terms making up 𝑄𝑎 to be expanded into spatial
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modes), we get

i𝑎𝜔
∫ 𝑋+

𝑋−

𝜓𝛼

[
ℎ𝑠

(
1 − 1

𝑎2𝜔2
𝜕2

𝜕𝑥2

)
+ 𝜅

𝑎2𝜔2
𝜕

𝜕𝑥

]
𝑄𝑎d𝑥 =

1
i𝑎𝜔

[
ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑥

]𝑋+

𝑋−

+ i𝑎𝜔
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑋2

)
Ψ𝛿𝛽𝛾 [ℎ𝑠] +

𝜅

𝑎2𝜔2 Ψ[𝛼]𝛽𝛾

]
1
2

∑︁
𝑏

𝑃𝑎−𝑏
𝛽 𝑃𝑏

𝛾 −𝑈𝑎−𝑏
𝛽 𝑈𝑏

𝛾

+ i𝑎𝜔
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑋2

)
Ψ𝛿 [𝛽 ] [𝛾 ] [ℎ𝑠] +

𝜅

𝑎2𝜔2 Ψ[𝛼] [𝛽 ] [𝛾 ]

] ∑︁
𝑏

𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾

2(𝑎 − 𝑏)𝑏𝜔2 . (A 8)

The first term here is exactly the leftover boundary term from the left-hand side; this will therefore
cancel when they are combined, meaning the projected mass conservation equation is(

𝛿𝛼𝛽
d
d𝑠

− Ψ{𝛼}𝛽
)
𝑈𝑎

𝛽 − i𝑎𝜔
[(

1 − 𝜆2
𝛼

𝑎2𝜔2𝑋2

)
Ψ𝛼𝛽 [ℎ𝑠] −

𝜅

𝑎2𝜔2 Ψ[𝛼]𝛽

]
𝑃𝑏
𝛽

= i𝑎𝜔
∑︁
𝑏

{
− β0Ψ𝛼𝛽𝛾 [ℎ𝑠]𝑃𝑎−𝑏

𝛽 𝑃𝑏
𝛾

+
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑋2

)
Ψ𝛿𝛽𝛾 [ℎ𝑠] +

𝜅

𝑎2𝜔2 Ψ[𝛼]𝛽𝛾

]
𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾 −𝑈𝑎−𝑏

𝛽
𝑈𝑏

𝛾

2

+
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑋2

)
Ψ𝛿 [𝛽 ] [𝛾 ] [ℎ𝑠] +

𝜅

𝑎2𝜔2 Ψ[𝛼] [𝛽 ] [𝛾 ]

]
𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾

2(𝑎 − 𝑏)𝑏𝜔2

}
.

(A 9)

Projecting (2.24b) proves easier, since there are no boundary-term cancellations; care is only
needed when dealing with the second 𝑥-derivative on the right-hand side. The left-hand side
requires no integration-by-parts this time, due to the absence of any 𝑥-derivatives, so we simply
have ∫ 𝑋+

𝑋−

𝜓𝛼

(
𝜕𝑃𝑎

𝜕𝑠
− i𝑎𝜔ℎ𝑠𝑈𝑎

)
d𝑥 =

(
𝛿𝛼𝛽

d
d𝑠

+ Ψ𝛼{𝛽}

)
𝑃𝑎
𝛽 − i𝑎𝜔Ψ𝛼𝛽 [ℎ𝑠]𝑈𝑎

𝛽 . (A 10)

The term involving (𝑎 − 𝑏) on the right-hand side is dealt with very easily, and the final term is
effectively a repeat of the final term in (A 8). This leaves only the term with the 𝜕2/𝜕𝑥2, which
must be integrated-by-parts before an expansion of the pressure into spatial modes may take place

∫ 𝑋+

𝑋−

i𝜔ℎ𝑠𝜓𝛼

∑︁
𝑏

[
−𝑏𝑈𝑎−𝑏 1

𝑏2𝜔2
𝜕2𝑃𝑏

𝜕𝑥2

]
d𝑥 = −i𝜔

[
ℎ𝑠𝜓𝛼

∑︁
𝑏

𝑏

𝑏2𝜔2𝑈
𝑎−𝑏 𝜕𝑃

𝑏

𝜕𝑥

]𝑋+

𝑋−

+
∫ 𝑋+

𝑋−

i𝜔
∑︁
𝑏

[
𝑏

𝑏2𝜔2
𝜕

(
ℎ𝑠𝜓𝛼𝑈

𝑎−𝑏)
)

𝜕𝑥

∑︁
𝛾

𝑃𝑏
𝛾

𝜕𝜓𝛾

𝜕𝑥

]
d𝑥. (A 11)

We know from the hard-walled boundary condition that the 𝜕𝑃𝑏/𝜕𝑥 in the boundary term must
turn into a 𝑈𝑏 (i.e. something expansible), and having now (legally) expanded the 𝑃𝑏 inside
the integral, we may now simply reverse the integration-by-parts (and employ the summation
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convention over 𝛾), giving∫ 𝑋+

𝑋−

i𝜔ℎ𝑠𝜓𝛼

∑︁
𝑏

(
−𝑏𝑈𝑎−𝑏 1

𝑏2𝜔2
𝜕2𝑃𝑏

𝜕𝑥2

)
d𝑥 =

[
𝑋+Ψ

+
[𝛼𝛽𝛾 ] − 𝑋−Ψ

−
[𝛼𝛽𝛾 ]

] ∑︁
𝑏

𝑈𝑎−𝑏
𝛽 𝑈𝑏

𝛾

+ i𝜔
∑︁
𝑏

[
𝑏

𝑏2𝜔2 ℎ𝑠𝜓𝛼𝑈
𝑎−𝑏𝑃𝑏

𝛾

𝜕𝜓𝛾

𝜕𝑥

]𝑋+

𝑋−

+ i𝜔
∑︁
𝑏

𝑏𝚲2
𝛿𝛾

𝑏2𝜔2𝑋2 Ψ𝛼𝛽𝛿 [ℎ𝑠]𝑈𝑎−𝑏
𝛽 𝑃𝑏

𝛾 . (A 12)

The 𝜕𝜓𝛾/𝜕𝑥 in the second boundary term causes it to vanish, by the Neumann condition on
spatial modes. Thus, this term has been dealt with, and the projected momentum equation is(

𝛿𝛼𝛽
d
d𝑠

+ Ψ𝛼{𝛽}

)
𝑃𝑎
𝛽 − i𝑎𝜔Ψ𝛼𝛽 [ℎ𝑠]𝑈𝑎

𝛽 =

[
𝑋+Ψ

+
[𝛼𝛽𝛾 ] − 𝑋−Ψ

−
[𝛼𝛽𝛾 ]

] ∑︁
𝑏

𝑈𝑎−𝑏
𝛽 𝑈𝑏

𝛾

+ i𝜔
∑︁
𝑏

{
Ψ𝛼𝛽𝛿 [ℎ𝑠]

[
(𝑎 − 𝑏)𝛿𝛿𝛾 − 𝑏

(
𝛿𝛿𝛾 −

𝚲2
𝛿𝛾

𝑏2𝜔2𝑋2

)]
+ 1
𝑏𝜔2 Ψ𝛼[𝛽 ] [𝛾 ] [ℎ𝑠]

}
𝑈𝑎−𝑏

𝛽 𝑃𝑏
𝛾 ,

(A 13)

where the ‘+’ and ‘−’ superscripts on boundary terms indicate that only a single side of the
boundary is being evaluated.

In theory, we have now done all of the work required to turn these equations from PDEs to
ODEs and the next step would be to put them into a computer and solve them. However, more
work may now be done to these equations in order to make them numerically efficient to solve. At
present, we have a countably infinite set of coupled vector ODEs in 𝑠 with matricial coefficients
that also depend on 𝑠, meaning that a solver would need to update the value of each matrix at each
point along the duct. This is missing a trick, though, since each of these matrices’ 𝑠-dependence
may be factored out into the form of 𝑠-dependent scalars such as 𝜅, while the matrices themselves
are constant, and thus only need to be defined before solving. This also has the advantage of added
clarity, since it will clearly highlight which terms in the equations are responsible for different
geometrical irregularities. In two dimensions, we have 𝑠-dependence in the integration limits 𝑋−
and 𝑋+, which is removed via the substitution 𝜉 = (𝑥 − 𝑋−)/𝑋 , so that the integration limits are
now 0 and 1. Expanding ℎ𝑠 and factoring the 𝜅 out then just leaves 1/

√
𝑋 in front of the modes,

which can also be factored out. If we apply this technique to one of the matrices from (A 13), we
get

Ψ𝛼𝛽 [ℎ𝑠] =
∫ 𝑋+

𝑋−

𝐶𝛼𝐶𝛽

𝑋
ℎ𝑠 cos

(
𝜆𝛼

𝑥 − 𝑋−
𝑋

)
cos

(
𝜆𝛽

𝑥 − 𝑋−
𝑋

)
d𝑥 (A 14)

= (1 − 𝜅𝑋−)𝛿𝛼𝛽 − 𝜅𝑋

∫ 1

0
𝐶𝛼𝐶𝛽𝜉 cos(𝜆𝛼𝜉) cos(𝜆𝛽𝜉)d𝜉 = (1 − 𝜅𝑋−)𝛿𝛼𝛽 − 𝜅𝑋Ξ𝛼𝛽 [𝜉]

where we have adopted a new notationΞ for the constant matrices, analogous to the Ψ notation but
now with different limits and a different integration variable. In order to deal with 𝑠-derivatives,
we note that

𝜕𝜓𝛼

𝜕𝑠
= − 𝑋 ′

2𝑋
𝜓𝛼 − 𝑋 ′

𝑋
(𝑥 − 𝑋−)

𝜕𝜓𝛼

𝜕𝑥
− 𝑋 ′

−
𝜕𝜓𝛼

𝜕𝑥
= − 𝑋 ′

2𝑋

(
𝜓𝛼 + 2𝜉

𝜕𝜓𝛼

𝜕𝜉

)
− 𝑋 ′

−
𝑋

𝜕𝜓𝛼

𝜕𝜉
, (A 15)

and a more convenient form may be found for some of the right-hand-side terms involving
derivatives on multiple indices, by use of the Leibniz rule. The two relations necessary for this
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are

Ψ𝛼[𝛽 ] [𝛾 ] [ℎ𝑠] =
𝜆2
𝛽
+ 𝜆2

𝛾 − 𝜆2
𝛼

2𝑋2 Ψ𝛼𝛽𝛾 [ℎ𝑠] − 𝜅Ψ[𝛼]𝛽𝛾 + 𝜅

2
Ψ[𝛼𝛽𝛾 ] , (A 16a)

Ψ[𝛼] [𝛽 ] [𝛾 ] =
𝜆2
𝛽
+ 𝜆2

𝛾 − 𝜆2
𝛼

2𝑋2 Ψ[𝛼]𝛽𝛾 + 𝜆2
𝛼

2𝑋2 Ψ[𝛼𝛽𝛾 ] . (A 16b)

In section 2.6 we introduced a compact notation which computationally and algebraically
simplified the equations. In the new notation, (A 9) and (A 13) can be rewritten as[

d
d𝑠

+ 𝑋 ′

2𝑋
W + 𝑋 ′

−
𝑋

Ã

]
𝒖𝑎 − i𝑎𝜔

[ (
I − 𝚲2

𝑎2𝜔2𝑋2

) (
(1 − 𝜅𝑋−)I − 𝜅𝑋A

)
− 𝜅Ã
𝑎2𝜔2𝑋

]
𝒑𝑎

=
i𝑎𝜔
√
𝑋

∑︁
𝑏

{
− β0

(
(1 − 𝜅𝑋−)I − 𝜅𝑋A

)
⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩

+
[ (

I + 𝚲2

𝑎2𝜔2𝑋2

) (
(1 − 𝜅𝑋−)I − 𝜅𝑋A

)
+ 𝜅Ã
𝑎2𝜔2𝑋

]
⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩ − ⟨𝒖𝑎−𝑏, 𝒖𝑏⟩

2

+


(
I + 𝚲2

𝑎2𝜔2𝑋2

) (
(1 − 𝜅𝑋−)I𝜆 − 𝜅𝑋A𝜆

)
+ 𝜅 Ã𝜆

𝑎2𝜔2𝑋

2(𝑎 − 𝑏)𝑏𝜔2𝑋2

 ⟨ 𝒑
𝑎−𝑏, 𝒑𝑏⟩

}
, (A 17a)

[
d
d𝑠

− 𝑋 ′

2𝑋
W T − 𝑋 ′

−
𝑋

ÃT

]
𝒑𝑎 − i𝑎𝜔

[
(1 − 𝜅𝑋−)I − 𝜅𝑋A

]
𝒖𝑎

=
1
√
𝑋

∑︁
𝑏

{(
𝑋 ′
+
𝑋

W+ − 𝑋 ′
−
𝑋

W−
)
⟨𝒖𝑎−𝑏, 𝒖𝑏⟩

+ i𝜔

[(
(1 − 𝜅𝑋−)I − 𝜅𝑋A

) 〈
I , (𝑎 − 𝑏)I − 𝑏

(
I − 𝚲2

𝑏2𝜔2𝑋2

)〉
+ (1 − 𝜅𝑋−)I𝜆 − 𝜅𝑋A𝜆

𝑏𝜔2𝑋2

]
⟨𝒖𝑎−𝑏, 𝒑𝑏⟩

}
, (A 17b)

where

I = 𝛿𝛼𝛽 , W𝛼𝛽 = 𝛿𝛼𝛽 + 2Ξ[𝛼]𝛽 [𝜉], (A 18a)

A𝛼𝛽 = Ξ𝛼𝛽 [𝜉], Ã𝛼𝛽 = Ξ[𝛼]𝛽 , (A 18b)
I𝛼𝛽𝛾 = Ξ𝛼𝛽𝛾 , A𝛼𝛽𝛾 = Ξ𝛼𝛽𝛾 [𝜉], (A 18c)

Ã𝛼𝛽𝛾 = Ξ[𝛼]𝛽𝛾 , A𝛼𝛽𝛾 = Ξ[𝛼𝛽𝛾 ] , (A 18d)

W+
𝛼𝛽𝛾 = Ξ+

[𝛼𝛽𝛾 ] , W−
𝛼𝛽𝛾 = Ξ−

[𝛼𝛽𝛾 ] , (A 18e)

I𝜆 = I ⟨𝚲2, I⟩ + ⟨I ,𝚲2⟩ − 𝚲2

2
, (A 18f )

A𝜆 = A ⟨𝚲2, I⟩ + ⟨I ,𝚲2⟩ − 𝚲2

2
+ Ã − A

2
, (A 18g)

Ã𝜆 = Ã ⟨𝚲2, I⟩ + ⟨I ,𝚲2⟩ − 𝚲2

2
+ 𝚲2

2
A. (A 18h)
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The names of these matrices have been chosen to represent the geometric irregularities whose
influence upon the equations they modulate, i.e. W for ‘width’, and A for ‘annularity’ (one matrix,
Ã is used for both, so a single name had to be picked). Calligraphic tensors are related to sans-serif
matrices with the same name, i.e. I𝛼𝛽0 = I𝛼𝛽 . Equations (A 17) are equations (2.48) in the main
text.

A.2. Three-dimensional spatial projection
Projection of the governing equations is complicated by the extra dimension, though fortunately
all boundary terms in 𝜃 disappear due to periodicity of the spatial modes. Thus, we only need
to worry about boundary terms in 𝑟 . To help with this, some quick formulae are introduced for
integration-by-parts (over a duct cross-section 𝑆, with differential d𝑆 = 𝑟d𝑟d𝜃) involving the
transverse gradient and FSND∬

𝑆

𝑓∇2
t 𝑔d𝑆 =

∫ 2π

0

[
𝑟 𝑓

𝜕𝑔

𝜕𝑟

]𝑅
0

d𝜃 −
∬

𝑆

∇t 𝑓 · ∇t𝑔d𝑆

=

∫ 2π

0

[
𝑟

(
𝑓
𝜕𝑔

𝜕𝑟
− 𝜕 𝑓

𝜕𝑟
𝑔

)]𝑅
0

d𝜃 +
∬

𝑆

𝑔∇2
t 𝑓 d𝑆,

(A 19a)

∬
𝑆

𝑓
𝜕𝑔

𝜕𝒏
d𝑆 =

∫ 2π

0

[
𝑟 cos 𝜙 𝑓 𝑔

]𝑅
0

d𝜃 −
∬

𝑆

𝑔
𝜕 𝑓

𝜕𝒏
d𝑆. (A 19b)

Note that we introduce here a shorthand 𝜙 for use in this appendix, defined as 𝜙 := 𝜃 − 𝜃0 (𝑠).
Using the formulae above, we can project the left-hand side of (2.35a):∬

𝑆

𝜓𝛼

{
𝜕𝑈𝑎

𝜕𝑠
− i𝑎𝜔

[
ℎ𝑠

(
1 +

∇2
t

𝑎2𝜔2

)
− 𝜅

𝑎2𝜔2
𝜕

𝜕𝒏

]
𝑃𝑎

}
d𝑆 =

d
d𝑠

(∬
𝜓𝛼𝑈

𝑎d𝑆
)

︸                  ︷︷                  ︸
1

−
∫ 2π

0
𝑅′ (𝑟𝜓𝛼𝑈

𝑎)
����
𝑅︸                    ︷︷                    ︸

2

+ i𝑎𝜔
𝑎2𝜔2

[
𝑟𝜓𝛼ℎ𝑠

𝜕𝑃𝑎

𝜕𝑟
− 𝑟

𝜕 (𝜓𝛼ℎ𝑠)
𝜕𝑟

𝑃𝑎 − 𝜅𝑟 cos 𝜙𝜓𝛼𝑃
𝑎

]𝑅
0︸                                                                    ︷︷                                                                    ︸

3

d𝜃

−
∬

𝑆

𝜕𝜓𝛼

𝜕𝑠
𝑈𝑎︸   ︷︷   ︸

4

+ i𝑎𝜔
(
ℎ𝑠𝜓𝛼 +

∇2
t

𝑎2𝜔2 (ℎ𝑠𝜓𝛼) +
𝜅

𝑎2𝜔2
𝜕𝜓𝛼

𝜕𝒏

)
𝑃𝑎︸                                                      ︷︷                                                      ︸

5

d𝑆. (A 20)

As in (A 1), we have brought the 𝑠-derivative on the𝑈𝑎 outside of the integral, and removed all of
the transverse derivatives from the pressure via integration-by-parts, so that all derivatives now
act on the 𝜓𝛼 mode. Once again term 2 combines with the first bit of term 3 to form the linear
part of the boundary condition (2.36), while the rest of term 3 cancels, and term 5 changes
after an application of the Leibniz rule, leaving∬

𝑆

𝜓𝛼

{
𝜕𝑈𝑎

𝜕𝑠
− i𝑎𝜔

[
ℎ𝑠

(
1 +

∇2
t

𝑎2𝜔2

)
− 𝜅

𝑎2𝜔2
𝜕

𝜕𝒏

]
𝑃𝑎

}
d𝑆

=

(
𝛿𝛼𝛽

d
d𝑠

−
∬

𝑆

𝜕𝜓𝛼

𝜕𝑠
𝜓𝛽d𝑆

)
𝑈𝑎

𝛽 + 1
i𝑎𝜔

[
𝑟ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑟

]𝑅
0

− i𝑎𝜔
[(

1 − 𝜆2
𝛼

𝑎2𝜔2𝑅2

) ∬
𝑆

ℎ𝑠𝜓𝛼𝜓𝛽d𝑆 − 𝜅

𝑎2𝜔2

∬
𝑆

𝜕𝜓𝛼

𝜕𝒏
𝜓𝛽d𝑆

]
𝑃𝑎
𝛽 . (A 21)
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We can use the same shorthand for these matrix-integrals as we did earlier, introducing ‘| • |’
as a subscript notation for the FSND, and round brackets for 𝜃-derivatives, so that the projected
left-hand side of (2.35a) becomes(

𝛿𝛼𝛽
d
d𝑠

− Ψ{𝛼}𝛽 [𝑟]
)
𝑈𝑎

𝛽 + 1
i𝑎𝜔

∫ 2π

0

[
𝑟ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑟

]𝑅
0

d𝜃

− i𝑎𝜔

[(
𝛿𝛼𝛾 −

𝚲2
𝛼𝛾

𝑎2𝜔2𝑅2

)
Ψ𝛾𝛽 [𝑟ℎ𝑠] −

𝜅

𝑎2𝜔2 Ψ|𝛼 |𝛽 [𝑟]
]
𝑃𝑎
𝛽 = 𝑂 (𝑀2) (A 22)

Turning now to the right-hand side of (2.35a), we have an easy first term, followed by some
derivatives of 𝑄𝑎, which will removed by integration-by-parts as they just were with the pressure
on the left-hand side

i𝑎𝜔
∬

𝑆

𝜓𝛼

[
ℎ𝑠

(
1 −

∇2
t

𝑎2𝜔2

)
+ 𝜅

𝑎2𝜔2
𝜕

𝜕𝒏

]
𝑄𝑎d𝑆

=

∫ 2π

0

i𝑎𝜔
𝑎2𝜔2

[
− 𝑟ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑟
+ 𝑟

𝜕 (ℎ𝑠𝜓𝛼)
𝜕𝑟

𝑄𝑎 + 𝜅𝑟 cos 𝜙𝜓𝛼𝑄
𝑎

]𝑅
0

d𝜃

+ i𝑎𝜔
∬

𝑆

𝑄𝑎

[(
1 −

∇2
t

𝑎2𝜔2

)
(ℎ𝑠𝜓𝛼) −

𝜅

𝑎2𝜔2
𝜕𝜓𝛼

𝜕𝒏

]
d𝑆 (A 23)

Switching to the Ψ notation and making some cancellations, we get

i𝑎𝜔
∬

𝑆

𝜓𝛼

[
ℎ𝑠

(
1 −

∇2
t

𝑎2𝜔2

)
+ 𝜅

𝑎2𝜔2
𝜕

𝜕𝒏

]
𝑄𝑎d𝑆 =

1
i𝑎𝜔

∫ 2π

0

[
𝑟ℎ𝑠𝜓𝛼

𝜕𝑄𝑎

𝜕𝑟

]𝑅
0

d𝜃

+ i𝑎𝜔

{[ (
𝛿𝛼𝛿 +

𝚲2
𝛼𝛿

𝑎2𝜔2𝑅2

)
Ψ𝛿𝛽𝛾 [𝑟ℎ𝑠] +

𝜅

𝑎2𝜔2 Ψ|𝛼 |𝛽𝛾 [𝑟]
] ∑︁

𝑏

𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾 −𝑈𝑎−𝑏

𝛽
𝑈𝑏

𝛾

2

+
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑅2

) (
Ψ𝛿 [𝛽 ] [𝛾 ] [𝑟ℎ𝑠] + Ψ𝛿 (𝛽) (𝛾) [ℎ𝑠/𝑟]

)
+ 𝜅

𝑎2𝜔2

(
Ψ|𝛼 | [𝛽 ] [𝛾 ] [𝑟] + Ψ|𝛼 | (𝛽) (𝛾) [1/𝑟]

)] ∑︁
𝑏

𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾

2(𝑎 − 𝑏)𝑏𝜔2

}
. (A 24)

Combining this with the left-hand side of (2.35a), the same leftover boundary term vanishes, to
give the full projected mass conservation equation,(

𝛿𝛼𝛽
d
d𝑠

− Ψ{𝛼}𝛽 [𝑟]
)
𝑈𝑎

𝛽 − i𝑎𝜔
[(

1 − 𝜆2
𝛼

𝑎2𝜔2𝑅2

)
Ψ𝛼𝛽 [𝑟ℎ𝑠] −

𝜅

𝑎2𝜔2 Ψ|𝛼 |𝛽 [𝑟]
]
𝑃𝑎
𝛽

= i𝑎𝜔
∑︁
𝑏

{
− β0Ψ𝛼𝛽𝛾 [𝑟ℎ𝑠]𝑃𝑎−𝑏

𝛽 𝑃𝑏
𝛾

+
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑅2

)
Ψ𝛿𝛽𝛾 [𝑟ℎ𝑠] +

𝜅

𝑎2𝜔2 Ψ|𝛼 |𝛽𝛾 [𝑟]
]
𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾 −𝑈𝑎−𝑏

𝛽
𝑈𝑏

𝛾

2

+
[ (

𝛿𝛼𝛿 +
𝚲2

𝛼𝛿

𝑎2𝜔2𝑅2

) (
Ψ𝛿 [𝛽 ] [𝛾 ] [𝑟ℎ𝑠] + Ψ𝛿 (𝛽) (𝛾) [ℎ𝑠/𝑟]

)
+ 𝜅

𝑎2𝜔2

(
Ψ|𝛼 | [𝛽 ] [𝛾 ] [𝑟] + Ψ|𝛼 | (𝛽) (𝛾) [1/𝑟]

)]
𝑃𝑎−𝑏
𝛽

𝑃𝑏
𝛾

2(𝑎 − 𝑏)𝑏𝜔2

}
.

(A 25)
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As before, the left-hand side of the momentum conservation equation (2.35b) has no boundary
cancellations, so projection is very straightforward∬

𝑆

𝜓𝛼

(
𝜕𝑃𝑎

𝜕𝑠
− i𝑎𝜔ℎ𝑠𝑈𝑎

)
d𝑆 =

(
𝛿𝛼𝛽

d
d𝑠

+ Ψ𝛼{𝛽} [𝑟]
)
𝑃𝑎
𝛽 − i𝑎𝜔Ψ𝛼𝛽 [𝑟ℎ𝑠]𝑈𝑎

𝛽 . (A 26)

Finally, the right-hand side of (2.35b) requires only that we deal carefully with the tranverse
Laplacian, which produces a boundary term,∬

𝑆

i𝜔ℎ𝑠𝜓𝛼

∑︁
𝑏

𝑈𝑎−𝑏
(
−𝑏

∇2
t

𝑏2𝜔2 𝑃
𝑏

)
d𝑆 = i𝜔

∫ 2π

0

[
𝑟ℎ𝑠𝜓𝛼

∑︁
𝑏

−𝑏
𝑏2𝜔2𝑈

𝑎−𝑏 𝜕𝑃
𝑏

𝜕𝑟

]𝑅
0

d𝜃

− i𝜔
∬

𝑆

∑︁
𝑏

(
−𝑏
𝑏2𝜔2

)
∇t (ℎ𝑠𝜓𝛼𝑈

𝑎−𝑏) · ∇t (𝜓𝛾)𝑃𝑏
𝛾d𝑆. (A 27)

As took place in two dimensions, the boundary term here becomes a 𝑈𝑎−𝑏𝑈𝑏, which can be
expanded, and the other term has its integration-by-parts reversed once more, leaving∬

𝑆

i𝜔ℎ𝑠𝜓𝛼

∑︁
𝑏

𝑈𝑎−𝑏
(
−𝑏

∇2
t

𝑏2𝜔2 𝑃
𝑏

)
d𝑆 = 𝑅′Ψ[𝛼𝛽𝛾 ]

∑︁
𝑏

𝑈𝑎−𝑏
𝛽 𝑈𝑏

𝛾

− i𝜔
∫ 2π

0

[∑︁
𝑏

−𝑏
𝑏2𝜔2 𝑟ℎ𝑠𝜓𝛼𝑈

𝑎−𝑏 𝜕𝜓𝛾

𝜕𝑟
𝑃𝑏
𝛾

]𝑅
0

d𝜃 + i𝜔
∑︁
𝑏

𝑏𝚲2
𝛿𝛾

𝑏2𝜔2𝑅2 Ψ𝛼𝛽𝛿 [𝑟ℎ𝑠]𝑈𝑎−𝑏
𝛽 𝑃𝑏

𝛾 . (A 28)

The leftover boundary term here cancels due to the Neumann condition on the spatial modes, so
the full projected version of (2.35b) is(

𝛿𝛼𝛽
d
d𝑠

+ Ψ𝛼{𝛽} [𝑟]
)
𝑃𝑎
𝛽 − i𝑎𝜔Ψ𝛼𝛽 [𝑟ℎ𝑠]𝑈𝑎

𝛽 = 𝑅′Ψ[𝛼𝛽𝛾 ]
∑︁
𝑏

𝑈𝑎−𝑏
𝛽 𝑈𝑏

𝛾

+ i𝜔
∑︁
𝑏

{
Ψ𝛼𝛽𝛿 [𝑟ℎ𝑠]

[
(𝑎 − 𝑏)𝛿𝛿𝛾 − 𝑏

(
𝛿𝛿𝛾 −

𝚲2
𝛿𝛾

𝑏2𝜔2𝑅2

)]
+
Ψ𝛼[𝛽 ] [𝛾 ] [𝑟ℎ𝑠] + Ψ𝛼(𝛽) (𝛾) [ℎ𝑠/𝑟]

𝑏𝜔2

}
𝑈𝑎−𝑏

𝛽 𝑃𝑏
𝛾 . (A 29)

We now have the same task of rewriting these equations in a more numerically efficient way. The
added complication in three dimensions is that these are double integrals, which means that they
must be split into separate radial and azimuthal parts; nonetheless, everything may still be made
independent of 𝑠 just as before. The notation for the split integrals is very similar to that of the Ψ

matrices, e.g.

Π𝛼[𝛽 ] [ 𝑓 (𝑥)] = 𝐶𝛼𝐶𝛽

∫ 1

𝑥=0
J𝑝𝛼

(𝜆𝛼𝑥)
𝜕

𝜕𝑥

[
J𝑝𝛽 (𝜆𝛽𝑥)

]
𝑓 (𝑥)d𝑥, (A 30)

and

Φ𝛼(𝛽) [𝑔(𝜙)] =
1
π

∫ 2π

𝜃=0
cos(𝑝𝛼𝜙 − 𝜉𝛼

π

2
) 𝜕

𝜕𝜃

[
cos(𝑝𝛽𝜙 − 𝜉𝛽

π

2
)
]
𝑔(𝜙)d𝜃. (A 31)

Once again, we need to know how 𝑠-derivatives of modes work: in three dimensions, the relevant
equation is

𝜕𝜓𝛼

𝜕𝑠
= −𝑅′

𝑅

(
𝜓𝛼 + 𝑟

𝜕𝜓𝛼

𝜕𝑟

)
− 𝜏

𝜕𝜓𝛼

𝜕𝜃
, (A 32)
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while the analogous improved forms of matrices with derivatives on multiple subscripts are

Ψ𝛼[𝛽 ] [𝛾 ] [𝑟ℎ𝑠] + Ψ𝛼(𝛽) (𝛾) [ℎ𝑠/𝑟]

=
𝜆2
𝛽
+ 𝜆2

𝛾 − 𝜆2
𝛼

2𝑅2 Ψ𝛼𝛽𝛾 [𝑟ℎ𝑠] − 𝜅Ψ|𝛼 |𝛽𝛾 [𝑟] +
𝜅

2
Ψ[𝛼𝛽𝛾 ] [𝑟 cos 𝜙], (A 33a)

Ψ|𝛼 | [𝛽 ] [𝛾 ] [𝑟] + Ψ|𝛼 | (𝛽) (𝛾) [1/𝑟]

=
𝜆2
𝛽
+ 𝜆2

𝛾 − 𝜆2
𝛼

2𝑅2 Ψ|𝛼 |𝛽𝛾 [𝑟] +
𝜆2
𝛼 − 𝑝2

𝛼

2𝑅2 Ψ[𝛼𝛽𝛾 ] [𝑟 cos 𝜙] − 1
2𝑅

Ψ[ (𝛼)𝛽𝛾 ] [sin 𝜙] . (A 33b)

Equipped with the above, (A 25) and (A 29) become(
d
d𝑠

+ 𝑅′

𝑅
W + 𝜏H

)
𝒖𝑎 − i𝑎𝜔

[(
I − 𝚲2

𝑎2𝜔2𝑅2

)
(I − 𝜅𝑅A) − 𝜅Ã

𝑎2𝜔2𝑅

]
𝒑𝑎

=
i𝑎𝜔
√
π𝑅

∑︁
𝑏

{ [(
I + 𝚲2

𝑎2𝜔2𝑅2

)
(I − 𝜅𝑅A) + 𝜅Ã

𝑎2𝜔2𝑅

]
⟨ 𝒑𝑎−𝑏, 𝒑𝑏⟩ − ⟨𝒖𝑎−𝑏, 𝒖𝑏⟩

2

+

(
I + 𝚲2

𝑎2𝜔2𝑅2

) (
I𝜆 − 𝜅𝑅A𝜆

)
+ 𝜅 Ã𝜆

𝑎2𝜔2𝑅

2(𝑎 − 𝑏)𝑏𝜔2𝑅2 − β0 (I − 𝜅𝑅A)
 ⟨ 𝒑

𝑎−𝑏, 𝒑𝑏⟩
}
, (A 34a)

(
d
d𝑠

− 𝑅′

𝑅
W T − 𝜏HT

)
𝒑𝑎 − i𝑎𝜔

(
I − 𝜅𝑅A

)
𝒖𝑎 =

1
√
π𝑅

∑︁
𝑏

{
𝑅′

𝑅
W⟨𝒖𝑎−𝑏, 𝒖𝑏⟩

+ i𝜔
[
(I − 𝜅𝑅A)

〈
I , (𝑎 − 𝑏)I − 𝑏

(
I − 𝚲2

𝑏2𝜔2𝑅2

) 〉
+ I𝜆 − 𝜅𝑅A𝜆

𝑏𝜔2𝑅2

]
⟨𝒖𝑎−𝑏, 𝒑𝑏⟩

}
, (A 34b)

where

𝚲𝛼𝛽 = 𝜆𝛼𝛿𝛼𝛽 , P𝛼𝛽 = 𝑝𝛼𝛿𝛼𝛽 , (A 35)

W𝛼𝛽 = 𝛿𝛼𝛽 + Π[𝛼]𝛽 [𝑥2]Φ𝛼𝛽 , H𝛼𝛽 = Π𝛼𝛽 [𝑥]Φ(𝛼)𝛽 , (A 36)

A𝛼𝛽 = Π𝛼𝛽 [𝑥2]Φ𝛼𝛽 [cos 𝜙], Ã𝛼𝛽 = Π[𝛼]𝛽 [𝑥]Φ𝛼𝛽 [cos 𝜙] − Π𝛼𝛽Φ(𝛼)𝛽 [sin 𝜙], (A 37)

I𝛼𝛽𝛾 = Π𝛼𝛽𝛾 [𝑥]Φ𝛼𝛽𝛾 , W𝛼𝛽𝛾 = Π[𝛼𝛽𝛾 ]Φ𝛼𝛽𝛾 , (A 38)

A𝛼𝛽𝛾 = Π𝛼𝛽𝛾 [𝑥2]Φ𝛼𝛽𝛾 [cos 𝜙], Ã𝛼𝛽𝛾 = Π[𝛼]𝛽𝛾 [𝑥]Φ𝛼𝛽𝛾 [cos 𝜙] − Π𝛼𝛽𝛾Φ(𝛼)𝛽𝛾 [sin 𝜙],
(A 39)

A𝛼𝛽𝛾 = Π[𝛼𝛽𝛾 ]Φ𝛼𝛽𝛾 [cos 𝜙], A∗
𝛼𝛽𝛾 = Π[𝛼𝛽𝛾 ]Φ(𝛼)𝛽𝛾 [sin 𝜙], (A 40)

and the eigenvalue-modified matrices I𝜆, A𝜆 and Ã𝜆 are defined by

I𝜆 = I ⟨𝚲2, I⟩ + ⟨I ,𝚲2⟩ − 𝚲2

2
, (A 41)

A𝜆 = A ⟨𝚲2, I⟩ + ⟨I ,𝚲2⟩ − 𝚲2

2
+ Ã − A

2
, (A 42)

Ã𝜆 = Ã ⟨𝚲2, I⟩ + ⟨I ,𝚲2⟩ − 𝚲2

2
+ (𝚲2 − P2)A − A∗

2
. (A 43)
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As before, notation has been chosen such that curvature acts through annularity matrices (A
etc), width variation through W , and with the new quantity, torsion, through a helicity matrix H .
Equations (A 34) are equations (2.49) in the main text.

A.3. Evaluation of integrals
Here the mode-integrals employed in the projection of the governing equations above are calcu-
lated explicitly, where possible. These are the expressions used when performing computations,
in order to save time.

A.3.1. Integrals from the two-dimensional formulation

Ξ𝛼𝛽 = 𝛿𝛼𝛽 , (A 44)

Ξ𝛼𝛽 [𝜉] =
𝛿𝛼𝛽

2
+ 𝐶𝛼𝐶𝛽

(
(−1)𝛼+𝛽 − 1

)
(𝛼2 + 𝛽2)

(𝛼2 − 𝛽2)2π2 , (A 45)

Ξ[𝛼]𝛽 =
√

2𝛼2𝐶𝛽

(−1)𝛼+𝛽 − 1
𝛼2 − 𝛽2 , (A 46)

Ξ[𝛼]𝛽 [𝜉] = 𝛿𝛼𝛽
(1 − 𝛿𝛼0)

2
+ (1 − 𝛿𝛼𝛽)

√
2𝛼2𝐶𝛽 (−1)𝛼+𝛽

𝛼2 − 𝛽2 . (A 47)

Ξ𝛼𝛽𝛾 =
𝐶𝛼𝐶𝛽

2𝐶𝛾

(𝛿𝛼+𝛽,𝛾 + 𝛿 |𝛼−𝛽 | ,𝛾), (A 48)

Ξ𝛼𝛽𝛾 [𝜉] =
Ξ𝛼𝛽𝛾

2
+
𝐶𝛼𝐶𝛽𝐶𝛾

(
(−1)𝛼+𝛽+𝛾 − 1

)
4π2

(
1

(𝛼 + 𝛽 + 𝛾)2

+ 1
(𝛼 + 𝛽 − 𝛾)2 + 1

(𝛼 − 𝛽 + 𝛾)2 + 1
(𝛼 − 𝛽 + 𝛾)2

)
, (A 49)

Ξ[𝛼]𝛽𝛾 =
𝛼𝐶𝛽𝐶𝛾

(
(−1)𝛼+𝛽+𝛾 − 1

)
2
√

2

(
1

𝛼 + 𝛽 − 𝛾
+ 1
𝛼 − 𝛽 + 𝛾

+ 1
𝛼 − 𝛽 − 𝛾

)
, (A 50)

Ξ[𝛼𝛽𝛾 ] = 𝐶𝛼𝐶𝛽𝐶𝛾

(
(−1)𝛼+𝛽+𝛾 − 1

)
, (A 51)

Ξ+
[𝛼𝛽𝛾 ] = 𝐶𝛼𝐶𝛽𝐶𝛾 (−1)𝛼+𝛽+𝛾 , (A 52)

Ξ−
[𝛼𝛽𝛾 ] = 𝐶𝛼𝐶𝛽𝐶𝛾 . (A 53)

A.3.2. Integrals from the three-dimensional formulation

Π𝛼𝛽 = 𝐶𝛼𝐶𝛽

∫ 1

0
𝐽𝑝𝛼

(𝜆𝛼𝑥)𝐽𝑝𝛽 (𝜆𝛽𝑥)d𝑥, (A 54)

Π𝛼𝛽 [𝑥] = 𝐶𝛼𝐶𝛽

∫ 1

0
𝑥𝐽𝑝𝛼

(𝜆𝛼𝑥)𝐽𝑝𝛽 (𝜆𝛽𝑥)d𝑥, (A 55)

Π𝛼𝛽 [𝑥2] = 𝐶𝛼𝐶𝛽

∫ 1

0
𝑥2𝐽𝑝𝛼

(𝜆𝛼𝑥)𝐽𝑝𝛽 (𝜆𝛽𝑥)d𝑥, (A 56)

Π[𝛼]𝛽 [𝑥] = 𝐶𝛼𝐶𝛽

∫ 1

0

[
𝑝𝛼𝐽𝑝𝛼

(𝜆𝛼𝑥) − 𝜆𝛼𝑥𝐽𝑝𝛼+1 (𝜆𝛼𝑥)
]
𝐽𝑝𝛽 (𝜆𝛽𝑥)d𝑥, (A 57)

Π[𝛼]𝛽 [𝑥2] = 𝐶𝛼𝐶𝛽

∫ 1

0
𝑥
[
𝑝𝛼𝐽𝑝𝛼

(𝜆𝛼𝑥) − 𝜆𝛼𝑥𝐽𝑝𝛼+1 (𝜆𝛼𝑥)
]
𝐽𝑝𝛽 (𝜆𝛽𝑥)d𝑥, (A 58)

Φ𝛼𝛽 = (𝛿𝑝𝛼+𝑝𝛽 ,0 + 𝛿𝑝𝛼 𝑝𝛽 )𝛿𝜉𝛼 𝜉𝛽 , (A 59)
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Φ(𝛼)𝛽 = −𝑝𝛼 (−1) 𝜉𝛼𝛿𝑝𝛼 𝑝𝛽𝛿𝜉𝛼+𝜉𝛽 ,1, (A 60)

Φ𝛼𝛽 [cos 𝜙] = 1
2

[
(−1) 𝜉𝛼𝛿𝑝𝛼+𝑝𝛽 ,1 + 𝛿 | 𝑝𝛼−𝑝𝛽 | ,1

]
𝛿𝜉𝛼 𝜉𝛽 , (A 61)

Φ𝛼𝛽 [sin 𝜙] = 1
2

[
𝛿𝑝𝛼+𝑝𝛽 ,1 + (−1) 𝜉𝛽 (𝑝𝛼 − 𝑝𝛽)𝛿 | 𝑝𝛼−𝑝𝛽 | ,1

]
𝛿𝜉𝛼+𝜉𝛽 ,1, (A 62)

Φ(𝛼)𝛽 [sin 𝜙] = − 𝑝𝛼

2
[
𝛿𝑝𝛼1𝛿𝑝𝛽0𝛿𝜉𝛼0 + (𝑝𝛼 − 𝑝𝛽)𝛿 | 𝑝𝛼−𝑝𝛽 | ,1

]
𝛿𝜉𝛼 𝜉𝛽 . (A 63)

The linear coefficient matrices in three dimensions always consist of a combination of a Π with
a Φ, which rarely simplifies further, although the notable cases are the identity,

I𝛼𝛽 = Π𝛼𝛽 [𝑥]Φ𝛼𝛽 = 𝛿𝛼𝛽 , (A 64)

and the helicity matrix,

H𝛼𝛽 = Π𝛼𝛽 [𝑥]Φ(𝛼)𝛽 = −𝑝𝛼 (−1) 𝜉𝛼𝛿𝜉𝛼+𝜉𝛽 ,1𝛿𝑝𝛼 𝑝𝛽𝛿𝑞𝛼𝑞𝛽 . (A 65)

Likewise,

Π𝛼𝛽𝛾 = 𝐶𝛼𝐶𝛽𝐶𝛾

∫ 1

0
𝐽𝑝𝛼

(𝜆𝛼𝑥)𝐽𝑝𝛽 (𝜆𝛽𝑥)𝐽𝑝𝛾 (𝜆𝛾𝑥)d𝑥, (A 66)

Π𝛼𝛽𝛾 [𝑥] = 𝐶𝛼𝐶𝛽𝐶𝛾

∫ 1

0
𝑥𝐽𝑝𝛼

(𝜆𝛼𝑥)𝐽𝑝𝛽 (𝜆𝛽𝑥)𝐽𝑝𝛾 (𝜆𝛾𝑥)d𝑥, (A 67)

Π𝛼𝛽𝛾 [𝑥2] = 𝐶𝛼𝐶𝛽𝐶𝛾

∫ 1

0
𝑥2𝐽𝑝𝛼

(𝜆𝛼𝑥)𝐽𝑝𝛽 (𝜆𝛽𝑥)𝐽𝑝𝛾 (𝜆𝛾𝑥)d𝑥, (A 68)

Π[𝛼]𝛽𝛾 [𝑥] = 𝐶𝛼𝐶𝛽𝐶𝛾

∫ 1

0

(
𝑝𝛼𝐽𝑝𝛼

(𝜆𝛼𝑥) − 𝜆𝛼𝑥𝐽𝑝𝛼+1 (𝜆𝛼𝑥)
)
𝐽𝑝𝛽 (𝜆𝛽𝑥)𝐽𝑝𝛾 (𝜆𝛾𝑥)d𝑥, (A 69)

Π[𝛼𝛽𝛾 ] [𝑥] = 𝐶𝛼𝐶𝛽𝐶𝛾𝐽𝑝𝛼
(𝜆𝛼)𝐽𝑝𝛽 (𝜆𝛽)𝐽𝑝𝛾 (𝜆𝛾), (A 70)

Φ𝛼𝛽𝛾 =
1
2

(
𝛿𝑝𝛼+𝑝𝛽+𝑝𝛾 ,0 + (−1) 𝜉𝛼𝛿𝑝𝛽+𝑝𝛾 , 𝑝𝛼

+ (−1) 𝜉𝛽𝛿𝑝𝛼+𝑝𝛾 , 𝑝𝛽

+ (−1) 𝜉𝛾𝛿𝑝𝛼+𝑝𝛽 , 𝑝𝛾

) (
𝛿𝜉𝛼+𝜉𝛽+𝜉𝛾 ,0 − 𝛿𝜉𝛼+𝜉𝛽+𝜉𝛾 ,2

)
, (A 71)

Φ𝛼𝛽𝛾 [cos 𝜙] = 1
4

(
𝛿𝑝𝛼+𝑝𝛽+𝑝𝛾 ,1 + (−1) 𝜉𝛼𝛿 | 𝑝𝛽+𝑝𝛾−𝑝𝛼 | ,1 + (−1) 𝜉𝛽𝛿 | 𝑝𝛼+𝑝𝛾−𝑝𝛽 | ,1

+ (−1) 𝜉𝛾𝛿 | 𝑝𝛼+𝑝𝛽−𝑝𝛾 | ,1

) (
𝛿𝜉𝛼+𝜉𝛽+𝜉𝛾 ,0 − 𝛿𝜉𝛼+𝜉𝛽+𝜉𝛾 ,2

)
, (A 72)

Φ(𝛼)𝛽𝛾 [sin 𝜙] = − 𝑝𝛼

4

(
𝛿𝑝𝛼+𝑝𝛽+𝑝𝛾 ,1 + 𝛿 | 𝑝𝛽+𝑝𝛾−𝑝𝛼 | ,1 (−1) 𝑝𝛽+𝑝𝛾−𝑝𝛼+𝜉𝛼

+ 𝛿 | 𝑝𝛼+𝑝𝛾−𝑝𝛽 | ,1 (−1) 𝑝𝛼+𝑝𝛾−𝑝𝛽+𝜉𝛽 + 𝛿 | 𝑝𝛼+𝑝𝛽−𝑝𝛾 | ,1 (−1) 𝑝𝛼+𝑝𝛽−𝑝𝛾+𝜉𝛾
])

×
(
𝛿𝜉𝛼+𝜉𝛽+𝜉𝛾 ,0 − 𝛿𝜉𝛼+𝜉𝛽+𝜉𝛾 ,2

)
. (A 73)
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Appendix B. Definitions of block matrices
In this appendix we detail the entries of the block matrix L𝑎 and block tensor N 𝑎𝑏 from equation

(2.50). In terms of square blocks L𝑎 =:
(
L𝑎

1 L𝑎
2

L𝑎
3 L𝑎

4

)
, we have a two-dimensional L𝑎

L𝑎 =
©­­«
− 𝑋′

2𝑋W − 𝑋′
−
𝑋

Ã i𝑎𝜔
[(

I − 𝚲2

𝑎2𝜔2𝑋2

)
(I − 𝜅𝑋A) − 𝜅Ã

𝑎2𝜔2𝑋

]
i𝑎𝜔

(
I − 𝜅𝑋A

)
𝑋′

2𝑋W𝑇 + 𝑋′
−
𝑋

Ã𝑇

ª®®¬ , (B 1)

and a three-dimensional L𝑎

L𝑎 =
©­­«
−𝑅′

𝑅
W − 𝜏H i𝑎𝜔

[(
I − 𝚲2

𝑎2𝜔2𝑅2

)
(I − 𝜅𝑅A) − 𝜅Ã

𝑎2𝜔2𝑅

]
i𝑎𝜔

(
I − 𝜅𝑅A

)
𝑅′

𝑅
W𝑇 + 𝜏H𝑇

ª®®¬ , (B 2)

and in terms of ‘cubic blocks’

N 𝑎𝑏
𝛼,𝛽,0:𝛼max

=

(
N 𝑎𝑏

1 N 𝑎𝑏
2

N 𝑎𝑏
3 N 𝑎𝑏

4

)
, N 𝑎𝑏

𝛼,𝛽,𝛼max+1:2𝛼max+1 =

(
N 𝑎𝑏

5 N 𝑎𝑏
6

N 𝑎𝑏
7 N 𝑎𝑏

8

)
, (B 3)

we have, in two dimensions

N 𝑎𝑏
1 = − i𝑎𝜔

2
√
𝑋

[(
I + 𝚲2

𝑎2𝜔2𝑋2

)
(I − 𝜅𝑋A) + 𝜅Ã

𝑎2𝜔2𝑋

]
, (B 4)

N 𝑎𝑏
3 =

1
√
𝑋

(
𝑋 ′
+
𝑋

W+ − 𝑋 ′
−
𝑋

W−
)
, (B 5)

N 𝑎𝑏
6 = −N 𝑎𝑏

1 + i𝑎𝜔
√
𝑋


(
I + 𝚲2

𝑎2𝜔2𝑋2

) (
I𝜆 − 𝜅𝑋A𝜆

)
+ 𝜅 Ã𝜆

𝑎2𝜔2𝑋

2(𝑎 − 𝑏)𝑏𝜔2𝑋2 − β0 (I − 𝜅𝑅A)
 , (B 6)

N 𝑎𝑏
7 =

i𝜔
√
𝑋

{
(I − 𝜅𝑋A)

〈
I , (𝑎 − 𝑏)I − 𝑏

(
I − 𝚲2

𝑏2𝜔2𝑋2

) 〉
+ I𝜆 − 𝜅𝑋A𝜆

𝑏𝜔2𝑋2

}
, (B 7)

and in three dimensions

N 𝑎𝑏
1 = − i𝑎𝜔

2
√
π𝑅

[(
I + 𝚲2

𝑎2𝜔2𝑅2

)
(I − 𝜅𝑅A) + 𝜅Ã

𝑎2𝜔2𝑅

]
, (B 8)

N 𝑎𝑏
3 =

𝑅′
√
π𝑅2W, (B 9)

N 𝑎𝑏
6 = −N 𝑎𝑏

1 + i𝑎𝜔
√
π𝑅


(
I + 𝚲2

𝑎2𝜔2𝑅2

) (
I𝜆 − 𝜅𝑅A𝜆

)
+ 𝜅 Ã𝜆

𝑎2𝜔2𝑅

2(𝑎 − 𝑏)𝑏𝜔2𝑅2 − β0 (I − 𝜅𝑅A)
 , (B 10)

N 𝑎𝑏
7 =

i𝜔
√
π𝑅

{
(I − 𝜅𝑅A)

〈
I , (𝑎 − 𝑏)I − 𝑏

(
I − 𝚲2

𝑏2𝜔2𝑅2

) 〉
+ I𝜆 − 𝜅𝑅A𝜆

𝑏𝜔2𝑅2

}
, (B 11)

while in both two and three dimensions N 𝑎𝑏
2 = N 𝑎𝑏

4 = N 𝑎𝑏
5 = N 𝑎𝑏

8 = 0.

Appendix C. Characteristic admittances of non-straight ducts
This appendix deals with the non-straight-duct versions of section 3.2.1.
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C.1. Curved-duct characteristic admittances
When we introduce curvature, the straight-duct operator from equation (3.5) retains its block
structure

L̆𝑎 = L𝑎

����
no 𝜏, 𝑋′ or 𝑅′

=

(
0 L̆𝑎

2
L̆𝑎

3 0

)
, (C 1)

with the difference that L̆𝑎
2 and L̆𝑎

3 are no longer diagonal. They do remain symmetric, however
(by inspection in L̆𝑎

3 ’s case, and by a complicated integration-by-parts in L̆𝑎
2 ’s). The eigenvalues

𝛾̆𝑎 now satisfy (from equation (3.7))

0 = det
[
L̆𝑎 − 𝛾̆𝑎

(
I 0
0 I

)]
= det

(
(𝛾̆𝑎)2I − L̆𝑎

3 L̆𝑎
2

)
. (C 2)

so they will exhibit the same properties as before (purely real/imaginary and being mirrored either
side of the origin). We once again have L̆𝑎

3 L̆𝑎
2 𝒄̆

𝑎±
𝛼,2 = (𝛾̆𝑎

𝛼)2 𝒄̆𝑎±
𝛼,2, so a single lower-eigenvector

matrix C̆𝑎 still exists, but this time it is non-diagonal. Substituting the admittance into the lower
block this time, we get

L̆𝑎
3 Y̆ 𝑎±C̆𝑎 = ±C̆𝑎𝚪̆

𝑎
, so Y̆ 𝑎± = ±(L̆𝑎

3 )
−1C̆𝑎𝚪̆

𝑎 (C̆𝑎)−1 =: ±Y̆ 𝑎 . (C 3)

The nonlinear characteristic admittance takes a bit more work this time: the term multiplying
Y̆𝑎𝑏± in the nonlinear admittance equation is no longer diagonal. We have already diagonalised
L̆𝑎

3 Y̆ 𝑎±, but we also need to diagonalise Y̆ 𝑎±L̆𝑎
3 . To do this we note that (3.2a) is satisfied by

(Y 𝑎)T as well as Y 𝑎, so with symmetric L̆𝑎
3 , we have

Y̆ 𝑎±L̆𝑎
3 = (L̆𝑎

3 Y̆ 𝑎±)T = ±
(
C̆𝑎

)−T
𝚪̆
𝑎
(
C̆𝑎

)T
. (C 4)

With both diagonalisations, we now have

Y̆𝑎𝑏±
𝛼𝛽𝛾 = ±

∑︁
𝜁 , 𝛿,𝜖

(
C̆𝑎

)−1

𝜁 𝛼

(
C̆𝑎−𝑏

)−1

𝛿𝛽

(
C̆𝑏

)−1

𝜖 𝛾

×

[(
C̆𝑎

)T [
N̆ 𝑎𝑏

1 ⟨Y̆ 𝑎−𝑏, Y̆ 𝑏⟩ + N̆ 𝑎𝑏
6 − Y̆ 𝑎N̆ 𝑎𝑏

7 ⟨Y̆ 𝑎−𝑏, I⟩
] 〈

C̆𝑎−𝑏, C̆𝑏
〉]

𝜁 𝛿𝜖

𝛾̆𝑎
𝜁
+ 𝛾̆𝑎−𝑏

𝛿
+ 𝛾̆𝑏𝜖

(C 5)

C.2. Torsional-duct characteristic admittances
The final parameter that we can switch on is torsion, and this is only possible in the three-
dimensional case. When we do so, the matrix L𝑎 becomes

L̃𝑎 = L𝑎

����
no 𝑅′

=

(
L̃𝑎

1 L̃𝑎
2

L̃𝑎
3 L̃𝑎

1

)
, (C 6)

where L̃𝑎
2 and L̃𝑎

3 remain real and symmetric, and L̃𝑎
1 is a real antisymmetric matrix (apparent by

direct calculation of the matrix H). Since a linear combination of the identity and an antisymmetric
matrix is non-singular, we know that the characteristic equation reads

0 = det
( [

L̃𝑎
1 − 𝛾̃𝑎I

]2
−

[
L̃𝑎

1 − 𝛾̃𝑎I
]

L̃𝑎
3

[
L̃𝑎

1 − 𝛾̃𝑎I
]−1

L̃𝑎
2

)
, (C 7)

but also, from the alternative expression in (3.7), that we have

0 = det
( [

L̃𝑎
1 − 𝛾̃𝑎I

]2
− L̃𝑎

2

[
L̃𝑎

1 − 𝛾̃𝑎I
]−1

L̃𝑎
3

[
L̃𝑎

1 − 𝛾̃𝑎I
] )

. (C 8)
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The expression on the right will have the same determinant if we take its transpose. Doing
so reverses the signs on every term except those with a 𝛾̃𝑎I , demonstrating that the eigenvalue
mirroring property remains, even if the eigenvalues are no longer necessarily on the real/imaginary
axes. We may still partition them into two matched groups, so we define

{𝛾̃𝑎
𝛼}∞𝛼=0 = {𝛾̃𝑎 : Re(𝛾̃𝑎) < 0} ∪ {𝛾̃𝑎 : Re(𝛾̃𝑎) = 0, Im(𝛾̃𝑎) > 0}, (C 9)

a set that we use to construct the positive characteristic admittance. These correspond to purely-
forward-propagating waves, as well as forward-decaying waves that may propagate either forwards
or backwards.

We must also now keep track of eigenvalue signs when defining eigenvectors. If we define
the diagonal 𝚪̃𝑎 matrix, and a general acoustic eigenvector ( 𝒄̃𝑎±𝛼,1, 𝒄̃

𝑎±
𝛼,2), there will exist matrices

C̃𝑎±, constructed from an ordering of either the ‘+’ lower eigenvectors or the ‘−’. The lower-block
admittance equation is then

(L̃𝑎
3 Ỹ 𝑎± + L̃𝑎

1 )C̃
𝑎± = ±C̃𝑎±𝚪̃

𝑎
, so Ỹ 𝑎± =

(
L̃𝑎

3

)−1
[
−L̃𝑎

1 ± C̃𝑎±𝚪̃
𝑎
(
C̃𝑎±

)−1
]
, (C 10)

from which we deduce that the torsional entries L̃𝑎
1 have caused a symmetry-breaking between

the positive and negative characteristic admittances. When it comes to computing the nonlinear
admittances, we once again must take a transpose

Ỹ 𝑎±L̃𝑎
3 − L̃𝑎

1 =

(
L̃𝑎

3 Ỹ 𝑎± + L̃𝑎
1

)T
= ±

(
C̃𝑎±

)−T
𝚪̃
𝑎
(
C̃𝑎±

)T
, (C 11)

meaning that the nonlinear characteristic admittances are given by

Ỹ𝑎𝑏±
𝛼𝛽𝛾 = ±

∑︁
𝜁 , 𝛿,𝜖

(
C̃𝑎±

)−1

𝜁 𝛼

(
C̃ (𝑎−𝑏)±

)−1

𝛿𝛽

(
C̃𝑏±

)−1

𝜖 𝛾

×

[(
C̃𝑎±

)T [
Ñ 𝑎𝑏

1 ⟨Ỹ (𝑎−𝑏)±, Ỹ 𝑏±⟩ + Ñ 𝑎𝑏
6 −Ỹ 𝑎±Ñ 𝑎𝑏

7 ⟨Ỹ (𝑎−𝑏)±, I⟩
]〈

C̃ (𝑎−𝑏)±, C̃𝑏±
〉]

𝜁 𝛿𝜖

𝛾̃𝑎
𝜁
+ 𝛾̃𝑎−𝑏

𝛿
+ 𝛾̃𝑏𝜖

. (C 12)

Appendix D. Viscosity in more detail
D.1. Numerical viscosity calculation

A more detailed derivation of the numerical viscosity term in equation (3.24) is presented here.
Starting from equation (4.9), the summand may be split into partial fractions as

𝑎

2(𝑎 − 𝑏)𝑏 =
1

2(𝑎 − 𝑏) +
1

2𝑏
(D 1)

and when summed from −∞ to ∞ this becomes −1/𝑎. This can be folded into the other sum, so
that the error becomes

𝐸𝑎 =
i𝜔β0

√
𝐴cs𝑀

2𝑒i𝑎𝜔𝑠

2(1 + 𝜎)2

( sgn(𝑎)𝑎max∑︁
𝑏=𝑎−sgn(𝑎)𝑎max ,

𝑏≠𝑎

1
𝑎 − 𝑏

+
sgn(𝑎)𝑎max∑︁

𝑏=𝑎−sgn(𝑎)𝑎max ,
𝑏≠0

1
𝑏

)
. (D 2)

The first sum is split as
sgn(𝑎)𝑎max∑︁

𝑏=𝑎−sgn(𝑎)𝑎max ,
𝑏≠𝑎

1
𝑎 − 𝑏

=

( 2𝑎−sgn(𝑎) (𝑎max+1)∑︁
𝑏=𝑎−sgn(𝑎)𝑎max

+
sgn(𝑎)𝑎max∑︁

2𝑎−sgn(𝑎)𝑎max ,
𝑏≠𝑎

)
1

𝑎 − 𝑏
, (D 3)



51

with the second term vanishing due to symmetric limits and an odd summand about 𝑏 = 𝑎. The
second sum is treated similarly

sgn(𝑎)𝑎max∑︁
𝑏=𝑎−sgn(𝑎)𝑎max ,

𝑏≠0

1
𝑏
=

( sgn(𝑎)𝑎max−𝑎∑︁
𝑏=𝑎−sgn(𝑎)𝑎max ,

𝑏≠0

+
sgn(𝑎)𝑎max∑︁

sgn(𝑎) (𝑎max+1)−𝑎

)
1
𝑏
, (D 4)

and this time the first term vanishes. Both of the remaining sums, with the correct substitution,
become

2𝑎−sgn(𝑎) (𝑎max+1)∑︁
𝑏=𝑎−sgn(𝑎)𝑎max

1
𝑎 − 𝑏

=

sgn(𝑎)𝑎max∑︁
sgn(𝑎) (𝑎max+1)−𝑎

1
𝑏
=

|𝑎 |−1∑︁
𝑏=0

sgn(𝑎)
𝑎max − 𝑏

, (D 5)

so then the error becomes

𝐸𝑎 =
i𝜔β0

√
𝐴cs𝑀

2𝑒i𝑎𝜔𝑠

(1 + 𝜎)2

|𝑎 |−1∑︁
𝑏=0

sgn(𝑎)
𝑎max − 𝑏

=
|𝑎 |𝜔β0𝑀𝑃𝑎

0
1 + 𝜎

|𝑎 |−1∑︁
𝑏=0

1
𝑎max − 𝑏

. (D 6)

The sum has upper and lower bounds in the form of integrals:∫ |𝑎 |−1

0

d𝑥
𝑎max − 𝑥

<

|𝑎 |−1∑︁
𝑏=0

1
𝑎max − 𝑏

<

∫ |𝑎 |−1

0

d𝑥
𝑎max − (𝑥 + 1) . (D 7)

We choose the lower bound as the approximation to the sum since the upper bound’s integrand is
singular at its upper limit. Thus, evaluating the integral and including the viscous scale factor 𝜈0,
we arrive at (3.24).

D.2. Physical viscosity calculation
If we instead consider physical viscosity in one dimension, the (single) momentum equation picks
up an extra term

−i𝑎𝜔𝑈𝑎 + 𝜕𝑃𝑎

𝜕𝑠
−

(
4𝜇
3

+ 𝜁

)
𝜕2𝑈𝑎

𝜕𝑠2 =
𝜕𝑄𝑎

𝜕𝑠
, (D 8)

while the mass conservation equation is unchanged. We still wish to use the Riccati method,
which requires our two equations to be first-order in 𝑠; this can be achieved by substituting the
𝑂 (𝑀2) expansion of 𝜕𝑈𝑎/𝜕𝑠 from the mass conservation equation here. That substitution results
in

−i𝑎𝜔𝑈𝑎 +
(
1 − i𝑎𝜔

(
4𝜇
3

+ 𝜁

))
𝜕𝑃𝑎

𝜕𝑠
=

𝜕𝑄𝑎

𝜕𝑠
− i𝑎𝜔

(
4𝜇
3

+ 𝜁

)
𝜕

𝜕𝑠

(∑︁
𝑏

β0𝑃
𝑎−𝑏𝑃𝑏 −𝑄𝑎

)
. (D 9)

The 𝑠-derivatives of𝑂 (𝑀2) terms may now have linear terms substituted into them. For notational
ease, we define a modified frequency for each temporal index, and absorb both viscosities into a
single constant

Ω𝑎 =
i𝑎𝜔

1 − i𝑎𝜔𝜇̃
, 𝜇̃ =

4𝜇
3

+ 𝜁, (D 10)

so then we have
𝜕𝑃𝑎

𝜕𝑠
−Ω𝑎𝑈𝑎 =

𝜕𝑄𝑎

𝜕𝑠
− 𝜇̃β0Ω

𝑎 𝜕

𝜕𝑠

∑︁
𝑏

𝑃𝑎−𝑏𝑃𝑏, (D 11)
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Defining the one-dimensional admittances in the usual way, we end up with the following two
equations for them

dY𝑎

d𝑠
= −Ω𝑎 (Y𝑎)2 + i𝑎𝜔, (D 12)

dY𝑎𝑏

d𝑠
= −Y𝑎𝑏

(
Ω𝑎Y 𝑎 +Ω𝑎−𝑏Y 𝑎−𝑏 +Ω𝑏Y 𝑏

)
− 1
√
π𝑅

{ (
Ω𝑎−𝑏Y 𝑎−𝑏 +Ω𝑏Y 𝑏

) (
Y 𝑎

2
+ 𝜇̃β0Ω

𝑎

)
+ 𝑖𝜔

2

(
𝑎𝛾 + 𝑎Y 𝑎−𝑏Y 𝑏 − 𝑏Y 𝑎Y 𝑎−𝑏 − (𝑎 − 𝑏)Y 𝑎Y 𝑏

) }
. (D 13)

Since we are working in one dimension, the admittances must be characteristic, and so we have
the solutions

Y
𝑎±

= ±Y
𝑎
= ± exp

(
− iπ

4
[sgn(1 − i𝑎𝜔𝜇̃) − 1]

) √︁
|1 − i𝑎𝜔𝜇̃ |, (D 14)

Y𝑎𝑏±
= ∓ 1

√
π𝑅

{ (
Ω𝑎−𝑏Y

𝑎−𝑏
+Ω𝑏Y

𝑏
) (

Y
𝑎

2
± 𝜇̃β0Ω

𝑎

)
(D 15)

+ i𝜔
2

(
𝑎𝛾 + 𝑎Y

𝑎−𝑏
Y

𝑏
− 𝑏Y

𝑎
Y

𝑎−𝑏
− (𝑎 − 𝑏)Y

𝑎
Y

𝑏
)}/(

Ω𝑎Y
𝑎
+Ω𝑎−𝑏Y

𝑎−𝑏
+Ω𝑏Y

𝑏
)
.

Assuming 𝜇̃ is small, first-order expansions of these quantities may be found, though the nonlinear
admittance only appears in 𝑂 (𝑀2) terms to begin with, so its second term here will eventually
be 𝑂 (𝑀2𝜇), and thus discarded. Hence, we have

d𝑃𝑎
0

d𝑠
≈ i𝑎𝜔

[
𝑃𝑎

0 − i𝑎𝜔β0

2
√
π𝑅

∑︁
𝑏

𝑃𝑎−𝑏
0 𝑃𝑏

0

]
− 𝑎2𝜔2 𝜇̃

2
𝑃𝑎

0 , (D 16)

suggesting that in order to stabilise a truncated sawtooth wave the physical viscosity would need
to be around 𝜇̃ ≈ 2β0𝑀/𝑎max𝜔.

Appendix E. Inverse exponential horn in more detail
This appendix contains a more detailed presentation of the analytical solution to the inverse
exponential horn’s first antisymmetric mode equation, discussed earlier in section (4.5). By use
of the substitution 𝜎 = πe2 |𝑚 |𝑠/2|𝑚 |𝑋i, we reduced the problem to the modified Bessel equation

𝜎2 d2𝑝

d𝜎2 + 𝜎
d𝑝
d𝜎

− (𝜈2 + 𝜎2)𝑝 = 0, (E 1)

where 𝜈 is defined by 𝜈2 = 1 − 𝜔2/4𝑚2, and takes purely real values or purely imaginary values,
depending on whether 𝜔 exceeds 2|𝑚 |. If 𝜈 is not a real integer, then the solution is given by

𝑝(𝜎) = 𝑐1I𝜈 (𝜎) + 𝑐2K𝜈 (𝜎). (E 2)

The velocity was eliminated in the derivation of equation (4.20), but can be retrieved from the
fourth row of equation (4.19), since we have

d𝑝
d𝑠

= i𝜔 𝑢 + 𝑋 ′

𝑋
𝑝 =⇒ 𝑢(𝜎) = 2|𝑚 |

i𝜔
[𝜎𝑝′ (𝜎) + 𝑝(𝜎)] , (E 3)
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and thus the velocity is given by

𝑢(𝜎) = 2|𝑚 |
i𝜔

[
𝑐1 Ĩ𝜈 (𝜎) + 𝑐2K̃𝜈 (𝜎)

]
, where Ĩ𝜈 (𝜎) := 𝜎I′𝜈 (𝜎) + I𝜈 (𝜎), (E 4)

with K̃𝜈 (𝜎) defined similarly. We then have an admittance given by

𝑌 (𝜎) = 𝑢(𝜎)
𝑝(𝜎) =

2|𝑚 |
i𝜔

𝑐1 Ĩ𝜈 (𝜎) + 𝑐2K̃𝜈 (𝜎)
𝑐1I𝜈 (𝜎) + 𝑐2K𝜈 (𝜎)

. (E 5)

Applying the boundary condition 𝑌 (𝜎o) = 𝑌o, we get

𝑌 (𝜎) = 2|𝑚 |
i𝜔

[
K̃𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | K𝜈 (𝜎o)
]

Ĩ𝜈 (𝜎) −
[
Ĩ𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | I𝜈 (𝜎o)
]

K̃𝜈 (𝜎)[
K̃𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | K𝜈 (𝜎o)
]

I𝜈 (𝜎) −
[
Ĩ𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | I𝜈 (𝜎o)
]

K𝜈 (𝜎)
, (E 6)

where the characteristic admittance 𝑌o is given by plugging the definition of 𝑋o into equation
(3.12)

𝑌o = 𝑌 (𝜎o) = exp
{
− iπ

4

[
sgn

(
1 − 4𝑚2𝜎2

o
𝜔2

)
− 1

]} √︄����1 − 4𝑚2𝜎2
o

𝜔2

����. (E 7)

Specifying the total pressure at the inlet, we match the overall remaining constant with equation
(3.23) to get

𝑝(𝜎) = 𝑀
√
𝑋i

2i

[
K̃𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | K𝜈 (𝜎o)
]

I𝜈 (𝜎) −
[
Ĩ𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | I𝜈 (𝜎o)
]

K𝜈 (𝜎)[
K̃𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | K𝜈 (𝜎o)
]

I𝜈 (𝜎i) −
[
Ĩ𝜈 (𝜎o) − i𝜔𝑌o

2 |𝑚 | I𝜈 (𝜎o)
]

K𝜈 (𝜎i)
. (E 8)

The boundary condition at the duct outlet 𝜎o can be rewritten as a vector orthogonality condition
in two dimensions, i.e.(

𝑐1
𝑐2

)
·
[
𝜎o

(
I′𝜈 (𝜎o)
K′

𝜈 (𝜎o)

)
+

(
1 − i𝜔𝑌o

2|𝑚 |

) (
I𝜈 (𝜎o)
K𝜈 (𝜎o)

)]
= 0. (E 9)

I𝜈 (𝜎) and I′𝜈 (𝜎) are exponentially-growing functions, while K𝜈 (𝜎) and K′
𝜈 (𝜎) exponentially

decay. Unscaled, these functions will therefore be of very different orders of magnitude at the
outlet. This relation, however, effectively sets the vector (𝑐1, 𝑐2) to be ‘asymptotically orthogonal’
to the Bessel function vector, meaning that the two terms in both the velocity and the pressure
are instead of comparable order at the outlet. If we then move backwards from the outlet, the K
functions will grow rapidly while the I functions decay, so for most of the duct the K functions
will dominate. For higher frequencies, 𝜈 can become imaginary, causing K to oscillate towards
the inlet: these oscillations will pass through zero, resulting in pressure nodes, which cause
singularities in the admittance. We note that for the inverse exponential horn, the lowest-mode
admittance singularities correspond approximately to roots of Ki

√
𝜔2/4𝑚2−1 (πe2 |𝑚 |𝑠/2|𝑚 |𝑋i).

Figure 17 shows these relationships in more detail, for a frequency low enough that oscillations
do not yet occur.

Another feature of this geometry (or any geometry with width variation) is that turning points
can occur, i.e. points where a mode can go from being cut-on to cut-off. These are significant
because they correspond mathematically to the eigenvalue 𝛾𝑎

𝛼 for that particular mode passing
from the real axis to the imaginary axis, and therefore necessarily passing through zero. Since
the splitting operators then involve the inverse of a matrix with a zero eigenvalue, this results in
singularities in the forward and backward-going pressures at this point. By inverting equation
(3.13) for 𝜔 = 𝜔𝑎

𝛼, 𝜆𝛼 = 𝛼π, and 𝑋 = 𝑋ie2 |𝑚 |𝑠 , we note that the location of the turning point for



54

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

s

-70

-60

-50

-40

-30

-20

-10

0

<(log[c1I8(<)])
<(log[c2K8(<)])

log

3qP1
a=!1 jP aj2=M

4

Figure 17: Figure comparing the (real parts of the) logarithmically plotted modified Bessel
functions (I𝜈 (𝜎) in blue, K𝜈 (𝜎) in red), along an inverse exponential horn of length

4.5𝑋𝑖 and width decrease ratio of 4, for a frequency of 0.5/𝑋𝑖 . RMS pressure (according
to this analytical solution) normalised by Mach number is logarithmically plotted in black.

mode (𝑎, 𝛼) is

𝑠tp =
1

2|𝑚 | log
(
𝑎𝜔𝑋i
𝛼π

)
. (E 10)
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