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Abstract

A mathematical model for wire rolling is developed, focusing on predicting the lateral spread. This provides, for the
first time, an analytic model of lateral spread without any fitting parameters. The model is derived directly from the
governing equations, assuming a rigid, perfectly plastic material and exploiting the thinness of the wire (in thickness
and width) relative to the roller size. Results are compared against experiments performed on stainless steel wire
using 100 mm diameter rolls, demonstrating accurate predictions of lateral spread across a wide range of wire diameters
(2.96 mm-7.96 mm) and reduction ratios (20%-60%), all without the need for fitting parameters. Since the model requires
only seconds to compute, the model’s valid range is explored for varying roll diameter, wire diameter, and reduction
ratio, and their effects on the resulting lateral spread characterized. The model can serve as a robust tool for validating
FE results, guiding process design, and laying the foundation for future improved models. MATLAB code to evaluate the
model is provided in the supplementary material.
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1. Introduction

Applications including sawblades, springs, piston
rings, and transformers depend critically on flattened
wires (Utsunomiya et al., 2001). These wires are usually
made by a flat rolling technique, where a wire with a
circular cross-section is cold rolled between cylindrical
rolls — sometimes through several passes — to achieve
a particular width and thickness (as illustrated in
figure 1). Since the wire can both elongate and widen,
achieving a final product that closely matches the desired
specifications requires an understanding of how the wire
deforms, making it essential to predict the lateral spread
accurately. w,

In cold rolling of a sheet, deformation in the lateral
direction often remains within the elastic range due to the Figure 1: A diagram of W%re ﬂa't rolling process; the wire initially has

s C. a circular cross-section with diameter dg and is flattened to a barrel
product’s geometry. However, this is not the case when shape cross section with the lateral spread W; and the contact width
an initial width-to-thickness ratio is less than 6, such as in We. Adapted from Figure 1 of Carlsson (1998).
wide strip or plate, or as low as 1 in round wire (Chitkara
and Johnson, 1966). In such cases, the plastic flow in the
roll gap at the start of rolling schedule is inherently three- Although research exists on the modelling of lateral
dimensional, complicating the analysis. For round wire, spread in thick plate rolling (e.g. Chitkara and Johnson,
this complexity is further increased by the transformation 1966; Lahoti and Kobayashi, 1974; Oh and Kobayashi,
of a round cross-section into a rectangular shape with ~ 1975; El-Nikhaily, 1979; Kennedy, 1987), wire flat rolling
bulged edges during the first pass. has received less attention. Kazeminezhad et al. (2005;

2006; 2008) published a series of papers studying different
parameters in wire rolling. Kazeminezhad and Karimi
*Corresponding Author Taheri (2005) developed a relationship for the width of
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of the formation of X-shaped shear bands in the wire cross-
section during the rolling process (Semiatin and Jonas,
1984; Pesin et al., 2002), along with the assumption that
as the height reduction increases, the shear bands rotate
while maintaining a constant length. Kazeminezhad and
Karimi Taheri (2006) then applied this equation alongside
the slab method, leading to a pressure hill distribution.
The study employs the Tresca yield criterion, assuming
the longitudinal stress ¢, to be the minimum stress,
the vertical stress oy, to be the maximum stress, and
the compressive stress in the lateral direction, o, to
lie between them. Although o, is implicitly included
in the yield function, and therefore in calculating the
roll pressure, the value of o,, is unknown and must be
approximated to find the lateral spread. Kazeminezhad
and Karimi Taheri (2005) therefore assumed that o, takes
a value between plane strain and plane stress, written as
aoyy, where « is a fitting parameter taking values between
0 and 0.5. Using flow rule equations and setting o, to be
zero at the end of the roll gap, they then wrote
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where W, is the lateral spread, dy is the initial diameter,
and 2h; is the final height of the wire. The first use
of this formulation has been attributed to Hill (1955)
for plate rolling and has also been derived by several
other authors (e.g. Chitkara and Johnson, 1966; Applied
Mechanics Group and Sparling, 1961), who experimentally
observed a linear relationship between In(W;/Wy) and
In(hg/h1), where Wy and hg are initial half width and half
height of the slab, respectively. The factor a and another
factor of linearity must then be found empirically from
experiments, with a proviso that each resulting equation
only gives reasonable lateral spread prediction within
the ranges of conditions for which they were empirically
determined (Chitkara and Johnson, 1966). For example,
for low and high carbon steel Kazeminezhad and Karimi
Taheri (2005) wrote equation (1) as

Wt B d() 0.45
de =1.02 (2]11) . (2)

Among a wide range of empirical formulations
suggested for predicting lateral spread (Chitkara and
Johnson, 1966), the one proposed by Kobayashi (1978)
is often referred to as being reliable for round
wire (Utsunomiya et al., 2001; Kazeminezhad et al., 2008;
Vallellano et al., 2008). Utsunomiya et al. (2001) and
Vallellano et al. (2008) attribute the following equation
to Kobayashi (1978), and we will refer to it here by this
name:

Wt dO 2h1 2.25 2R —0.82
—L=0.7854 (1 15.8(1— =+ =
do 2h, < < do ) do

2h
+0.1426 <dl> . (3)

0

where R is the roll radius. However, similar to other
empirical equations, this equation will be shown to
lose accuracy away form the parameters it was initially
developed to model.

Finite element (FE) analysis has provided valuable
insights into wire rolling, similar to other metal-forming
processes.  Vallellano et al. (2008) performed a 3D
numerical analysis using the ABAQUS finite element
software to study contact stress distributions, residual
stresses, and lateral spread. While 3D FE analysis
offers highly detailed information, it is computationally
expensive, especially when it is used in design iterations
where several simulations are required. Although
some studies have investigated FE simulations of wire
rolling (Carlsson, 1998; Vallellano et al., 2008; Hwang
et al., 2021), computational cost data are generally not
reported. However, to give an indication, a 2D FE
simulation of half-of-the-thickness sheet rolling required
15.9 CPU hours for a reliable case (30 elements through
the half-thickness) and 0.25 CPU hours for a coarse
case (5 elements) (Flanagan et al., 2025); since 3D wire-
rolling simulations are considerably more complex, they
are expected to be significantly more expensive yet. In
addition to high computational cost, FE results require
validation against a reliable reference. =~ Whether the
objective is process design or FE validation, a review of the
literature further reveals a notable gap in the availability
of models with well-defined, traceable assumptions for the
rolling of round wire.

Using similar techniques to the asymptotic mathemat-
ical modelling of sheet rolling (Erfanian et al., 2025),
here an asymptotic mathematical model is developed
for the regime of a small friction coefficient and large
length-to-thickness ratio, consistent with the slab method
of Kazeminezhad and Karimi Taheri (2006). The further
assumption that the width is comparably smaller than the
length of wire in the roll gap simplifies the problem to
plane-stress, where the stress in z direction is negligible.
This allows for finding the lateral spread without the
need for fitting parameters or solving a problem in a
complicated 3D stress state. Even so, the derivation
of equations in all directions and the use of asymptotic
analysis provide a foundation for further improvements to
the model in the future, unlike the slab method, which
remains inherently limited.

An outline of the paper is as follows. The
mathematical model is explained in Section 2, beginning
with section 2.1 introducing the simplifying assumptions.
The scaling parameters and resulting non-dimensionalised
governing equations are given in Section 2.2 for a rigid
perfectly plastic material, and their solution is derived
in Section 2.3. Section 2.4 summarises the solutions
and outlines the computational methods used to evaluate
them. The experimental procedure for obtaining data
is detailed in Section 3, which is used to validate the
lateral spread predictions of the model in Section 4.1,
alongside FE data from Vallellano et al. (2008). The



Longitudinal spread is compared against experimental
data in Section 4.2 and the roll pressure predictions are
validated against FE data from Vallellano et al. (2008) and
presented in Section 4.3. Having validated the model, a
parametric study is presented in Section 5, exploring both
the range of validity of the model in Section 5.1 and the
influence of parameters including friction, reduction, and
roll diameter on the lateral spread in Section 5.2. Finally,
a discussion and potential directions for future research
are provided in Section 6.

2. Mathematical model

2.1. Assumptions

We first make two assumptions to help in modelling
practical wire rolling: section 2.1.1 concerns the initial
transformation of a cylindrical wire in the first roll-
stand, and section 2.1.2 concerns the bulged edges of the
subsequently rolled wire. These assumptions allow for a
simpler model based on rectangular cross-sections to be
developed in section 2.2.

2.1.1. Clircular to rectangular deformation

A schematic diagram of the model is shown in figure 2.
In the first pass of rolling, the round wire undergoes
deformation. Here, we assume that at some point after
entry, the initially circular cross-section has transformed
into a rectangular shape without changing the cross-
sectional area. This stage is chosen as the beginning of
the roll gap in the asymptotic model, and is marked A
in figure 2. Therefore, instead of solving the equation
from the actual roll-gap entrance, where the cross-section
is circular, the information is translated to point A in
the roll gap, and the equations are solved from this point
onwards. The intuition behind this assumption is that we
hypothesise it is much easier for a circular cross-section
wire at the beginning of the process — where only a small
region is in contact with the rolls — to deform into a
rectangular shape with a flat top than to elongate. It
should also be noted that the assumption of an unchanged
cross-sectional area between the entrance and point A does
not imply that the wire length remains constant, as no
assumption about the cross-sectional area is made beyond
point A. All of these assumptions, although physically
justifiable, remain approximations that are validated in
section 4 through comparison with experimental results.
The location A is determined by equating the cross-
sectional area at this location to that of the initial circular
wire. Thus, if EA and BA are the half-thickness and half-
width of the wire at location A, and we assume that the
initial rectangular cross-section has aspect ratio ba / ha =
a, we may write

A . . . . b
4hAbA:4ah§:%d02 = hA:,/lg—adO:EA. (4)

In order to preserve the symmery of the initially cylindrical
wire, we will assume that @ = 1 throughout this work
unless explicitly stated; this assumption is further justified
in Appendix A by comparison with experimental results.
As the quantities will later be non-dimensionalised, and
to clearly distinguish between dimensional and non-
dimensional parameters, we adopt the convention that,
for the remainder of the paper, variables with hats denote
dimensional quantities, while unhatted variables represent
their dimensionless counterparts.

Note that this circular-to-square transition is only
relevant to the first rolling pass, and for subsequent passes
point A is at the roll-gap entrance, ha and by are the
half-thickness and half-width of the wire at the entrance,
and equation (4) is not needed.

2.1.2. Bulged edges of rectangular wire

In practice, the wire never has a perfectly rectangular
cross-section but has bulged edges (see figure 2). A second
assumption is therefore that, as the rolling progresses,
a square cross-section is progressively flattened into a
rectangular shape, and the bulged edges are approximated
as half-circles whilst maintaining the same area as the
perfect rectangle (also shown in figure 2). Consequently,

OW.h+mh? =4bh =  W.=2b—nh/2, (5)
where W, is the Wid:Dh in contact with the roll, and the
total lateral spread W; is given by

W, = W, + 2h. (6)

This allows a model of the deformation of a rectangular
cross-section to be correlated with the real process with
a bulged cross-section. As will be shown later, this set of
assumptions allows for the simplest possible model, while
having minimal effect on lateral spread prediction.

In the following, we rigorously derive a leading-order
asymptotic model for the rolling of a rectangular wire.
The ad hoc model previously introduced for the initial
transformation of a circular wire into a square cross-section
enables this asymptotic formulation to be applied to
circular wires as well, which will be validated a posteriori
through comparison with FE results. The governing
equations are written for rigid perfectly plastic material
rolled with rigid rolls while Coulomb friction is imposed
between the rolls and material with a constant friction
coefficient. The equations are formulated for a regime
characterised by a small friction coefficient between the roll
and the wire, as well as a wire width and thickness much
smaller than its length within the roll gap. The latter
condition effectively corresponds to a small wire diameter
compared to the roll diameter.

2.2. Scalings
equations

Asymptotic (or perturbation) methods (Hinch, 1991)
are widely used in applied mechanics, exploiting the

and the mnon-dimensionalised governing
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Figure 2: A diagram of the model; the region of interest extends from point A to the roll gap exit. At A, the cross-section is approximated
as a square with the same area as the initial round wire, transitioning into a rectangular approximation during rolling with the same area as

the real bulged cross section.

smallness of an inherent parameter to obtain approximate
analytical /semi-analytical solutions with controllable
errors. The first step in applying this technique is to
rescale the governing equations and parameters based on
the inherent scales of the problem. This process removes
physical units and expresses all quantities in a comparable
dimensionless form, allowing their relative magnitudes
to be evaluated. The resulting solution can then be
redimensionalized using the same scales to provide an
engineering solution in physical units. Here, the horizontal
distance is scaled with the characteristic roll-gap length, Z,
so that z = &/ ? gives a dimensionless horizontal coordinate
x, and the dimensional horizontal position & can be
recovered from x using & = iz, Similarly, the vertical
distance is scaled with the initial sheet half-thickness, sz,
so that y = g/ ha. For circular rolls of radius R, the roll-
gap length { is equal to

/= \/QR(}ALA — hy) = (ha — h1)2, (7)

where / is measured from the point A, as shown in figure 2.

Similar to the slab method, small values of the friction
coefficient and the aspect ratio § = ha / are of interest.
The latter can be justified by the practical application
of small wire diameters (less than a centimetre) and
large roll diameter. The roll diameter, wire diameter,
and reduction ratio vary significantly depending on the
desired reduction, material, and application. Reported
values in the literature span a wide range, with roll
diameters between 75-1600 mm, wire diameters between
0.5-13 mm, and single-pass reduction ratios between
10%-70%, obtained either experimentally or through FE
simulations (Kazeminezhad and Karimi Taheri, 2005;
Vallellano et al., 2008; Hwang et al., 2021). Consequently,
the corresponding aspect ratio, d, also covers a broad
range. For instance, applying a 100 mm roll diameter to a
7.96 mm wire diameter with a reduction of 33% results in
an aspect ratio of 4 = 0.38, and a larger roll diameter

or a smaller wire diameter would further decrease this
value. The friction coefficient, pu, is typically reported
between 0.09-0.3 in wire-rolling studies (Lin et al., 2008;
Lee et al., 2018), suggesting that 4 is of the same order of
magnitude as 6. We also assume that the width, 5(50), is
of the same order of magnitude as the thickness. This is
clearly true for the initially cylindrical wire, and becomes
less true the wider the wire becomes during rolling. We
therefore scale the lateral distance 2 with the initial sheet
half-thickness, ?LA7 so that z = 2/iLA. In this way, with
the assumption of the rectangular cross-section without
considering barreling, z varies between —b(z) and b(z)
where b(z) = b(2)/ha.

The velocity (4,9,w), is scaled with the a priori
unknown wire velocity at point A, denoted Uh,
and with factors of § that we will see later are
needed to balance incompressibility, giving (u, v, w) =
() Un,0/80x, 0 /50%).

Hydrostatic pressure, p, and the normal Cauchy
stresses, 0., and Gy, and their deviatoric components,
372 and §,,, are all scaled with the shear yield stress, A.
The assumption of a small friction coefficient is encoded
by setting S = p/d, where § is a quantity of approximate
unit magnitude. Similarly, the shear stress, 6, is scaled
with d& resulting from small friction. To determine the
appropriate order of magnitude of stress components in
the z-direction, we analysed the boundary condition at
the lateral edges of the wire. Since these edges are free
surfaces, the material is unconstrained in the z-direction
and must satisfy the traction-free boundary condition

&-m=0, (8)

where m is the unit vector normal to the wire lateral
edges. By enforcing this physical constraint, we can infer
the scaling of z-direction stress components relative to &,
and thus determine their order of magnitude in the model.
For a rectangular cross section, the wire lateral edges are



given by 2—0(%) = 0, so the unit vector normal m is given

by . A
m — V( ?(A)) _ (—5db/dx,0, 1) (9)
V=@ /14 52(db/da)’
where V = (9/82,0/94,8/9%), and the factor § is due

to b being scaled by ha while 7 is scaled by {. Therefore
applying the traction-free boundary condition (8) we find

5%0195 =64, /R at z = b(x), (10a)

5 db .

) 0 = Gy-/R at z = b(x), (10b)
6%A Jh=0../k at z = b(z) (10c)

dxazz =022 - )

where db/dz, 0., and Ogy are written in their known
dimensionless forms, and 6., 6., and &, whose orders
of magnitude are thus far unknown, are written in
dimensional form. The set of equations (10) implies that
Gz is O(0R) and the normal stress in the lateral direction,
0. and the shear stress component &,, are both O(5%k).
Although this holds at the lateral edges, we assume
these orders of magnitude apply throughout the modelling
region. Consequently, 6., and &, are scaled with §2%,
while 6, is scaled with d&. As will be shown later, this
approach leads to the simplest yet consistent solution,
where the horizontal velocity and normal stresses depend
only on z. To complete the non-dimensionalisation, the
scaling for the plastic multiplier is chosen to balance the

horizontal flow equation, 04/0% = 5\§m, giving A =
RIA/Us. In summary, the original dimensional variables

can be obtained from the dimensionless variables using
the following rescalings:

t = lr, g = hay, 2= haz,
h = hah, b = hab, ha = 60
Oze = ROgz, a'yy = /%O'yyv Ozz = 62%0’2.&
Gry = 0ROy, Gyo = 0%R0Oys,  Gupp = 0ROy,  (11)
= ﬁAu D= 5UA11, W = 6UAw,
N o
A= ==, p = kp, p=0p.
R
We may now wuse the scalings introduced in

equation (11) to write the governing equations in a
dimensionless rescaled form. For example, the vertical
force balance is written as

0= 064y 06y, 06y,
0% 09 0%
_ O(0kogy) | O(koyy) | 0(0°Royz)
o(lx)  O(hay)  O(haz)
0k 0wy | K Joy, Ok Doy,
g ax BA ay ilA aZ
o Oo. do
529%y vy | 52992 19
" ( o oy 00 ) - (12

where § = hy /@ is used in the last line. Doing this to the
force balance in each direction gives

00y 004y 004,
- =0 13
ox oy | 0z (132)
Jo do. Jo
5= W22 =0 13b
Ox * Oy + 0z ’ (13b)
00y, 0oy, 00,
=0. 13
ox oy 0z (13c)
We now observe the emergence of ¢ in the

nondimensional equations (13) arising from the scaling
defined in (11). This is what enables the asymptotic
analysis that follows: for example, from (13b) we
see that do,,/0y = O(0%), and so the through
thickness variation in oy, is small, and is quantified
to be of size O(6%). This would not have been
evident without nondimensionalizing. Similarly, using the
scaling in equation (11) the dimensionless forms of the
incompressibility and flow rule relations are

ou Ov Ow

37:6"_37/—’_&:0’ (14a)
% ~ A, (14b)

% — Asy, (14c)

%} ~ s, (14d)

gz P gz = 25% Aoy, (1de)
g:yx—wmm (14f)
% + %Z = 25° ). (14g)

where the deviatoric stresses s;; is defined as

1
= (Ogy + Oyy + 5%0..).

045 = Si5 — pdij and —pP = 3

(15)

From (15) it can be seen that to get a non-zero pressure

at leading order, s,, is also required to be the order of
magnitude of &.

With the scaling introduced, the von Mises yield
criterion will be

(022 — Uyy)2 + (0w — 52Uzz)2 + (oyy — 520zz)2

+66%02, + 66%02, + 65%0., =6. (16)

Ty

The Coulomb friction boundary condition on the
roll surface y = h(z) is t-on = Fun-o-n,
where p = Jf is the coefficient of friction, n =

(—=ddh/dz,1,0)/4/1 +52(dh/dx)2 is the unit normal to
the roll surface and ¢ = (1,5dh/dx,0)//1 + 62(dh/dz)?



is the unit tangent in the rolling direction. This may be
expressed as

dh dh\?
00y = 0ua) + 5<1 —6? (dx> )omy (17)

dh dh\?
=FB <ayy — 252&"%@; + 62 (dx) am>

Throughout this work, the convention is adopted that the
negative sign in F corresponds to the region before the
neutral point (£ < Zy), while the positive sign applies to
the region after the neutral point (& > &n).

Assuming dimensional tensions F AJous are applied at
location A and at the exit, the horizontal stress must
satisfy

on y = h(x).

f?‘ ba/out hajout
AA/AO;H = Oze dydz, at A/exit (18)
4’%hA —bajout Y —ha/out

where hoyt and boyt are respectively half of the final
thickness and width, and hy = 1 and ba are respectively
half of the initial thickness and width at location A.
Vertical symmetry requires the boundary conditions

Ozy(2,0,2) =0 and  v(z,0,2) =0. (19)
There is no flow of material either through the roll surface
y = h(z), nor through the lateral edges of the wire
z = b(x). Mathematically, these are imposed as boundary
conditions, expressed as

V.n=0 v:%u ony = h(z), (20a)
db

V.-m=0 w=q-u onz=>b(zx), (20b)
x

where V' = (u, dv, dw) is the velocity made dimensionless

with Uy. Finally, integrating the incompressibility
equation (14a) vertically from y = —h(z) to y = h(z),
laterally from z = —b(z) to z = b(x), and axially from

point A to any axial position z, using the divergence
theorem and applying the boundary conditions (20) yields

b(x)

h(z)
/ u dydz = 4ba, (21)
—b(x) J —h(z)

where h = u =1 and b = by at point A gives the constant
of integration as 4by. Equation (21) effectively says that,
since no material is lost or gained during rolling and the
material is incompressible, the volume rate of flow across
the wire cross-section is a constant independent of where
along the wire it is measured at.

2.3. Leading-order asymptotic solution

Following non-dimensionalisation, all terms in the
governing equations are now the same size except for
the explicit factors of §, which is small. Following

the technique of asymptotics (see, e.g. Hinch, 1991), we
now expand in an asymptotic series in powers of the
small parameter §, such that each successive term is
asymptotically smaller than the preceding one. Whilst
many complicated expansions are sometimes needed, here
a simple expansion in powers of 0 is sufficient, as is
the case for sheet rolling (Erfanian et al., 2025); this is
suggested from the fact that the small parameter § only
appears as integer powers of § in the governing equations
and boundary conditions above, and may be verified a
posteriori once the solution has been calculated. We
therefore expand any unknown variable as

¢ =00 + 561 + 56> + 0(5%), (22)

with ¢(©) not identically zero so that ¢ = O(1). Here, ¢
represents any of the unknown variables u, v, w, 0;j, Si;,
p and A; for example, 0., = Ua(%) + (50%) + 5209@ +

Substituting the asymptotic expansion into the governing
equations (13) to (21) allows smaller terms to be neglected
relative to dominant ones successively, establishing an
ordered hierarchy that leads to an approximate but
systematically improvable solution with a quantifiable
error. While this formalism could be used to compute the
solution to an arbitrary order of accuracy (for example,
Erfanian et al. (2025) consider up to the second order
terms 03(0235) for sheet rolling), here we will only consider the
leading order terms. We therefore neglect all terms of O(9)
or higher to derive the leading-order equations. It should
be noted that neglecting O(d) terms in the expansion does
not mean we are setting § to zero, but rather that we
are calculating the leading-order solution which represents
the dominant physical behaviour for small, yet realistic,
values of §, with a relative error of order O(J) which could
subsequently be corrected for by including higher-order
terms. From the hydrostatic pressure (15) at leading order

o) = —3p® — ol (29

Substituting (23) into the yield function (16) at leading
order gives

(o2 = (=35 =0 @) "+ (o) "+ (3 +02) =6

(24a)
(0) 4 — 3p(0)?
L o2 VIS (21)
© _ _3p(0) V4 3p(0)*
Oy = . (24c¢)
2 2

The force balance in the y direction (13b), at leading
order is reduced to
801(/%)
dy
Using this condition alongside the stress solutions (24)
implies that a_,(,%) and therefore p(®) and J:(E%) are vertically
homogeneous which is the same as the slab method’s

—0. (25)



assumption. We now show that these components are
independent of z, as well, and only change along the rolling
direction, z. From (14e) and (14f), u(®) is independent of y
and z, which, together with the continuity equation (14a)
and (14g), imply that v(%) is linear in y and w(® is linear
in z. Now the set of equations (14b)—(14d), where their
left-hand sides are only functions of x while the stresses
are functions of p(®) (equation (24)) shows that in order
for a single value for A(9) satisfies them all, p(®) must be a
function of z only.

The force equilibrium in the z direction (13a) now can
be integrated over z and y to give

h(z)b(2)o ) (@) +b(x)o §) (2, h(@)) +h(z)ol? (x,b(x)) (:22)7
where 03(5(1),) (z,h(z)) and ag(c(;,)(;v,b(x)) can be found from

the boundary conditions (17) and (10a), respectively.
Therefore

oty dh db
hb Z +5(0 <b+h >+b( ;5) 0. (27)

This is the same equation as was derived using the
slab method by Kazeminezhad and Karimi Taheri (2006),
although our formulae for ol and U?(,%) here are different.
Equation (27) provides an ordinary differential equation
(ODE) in terms of p(® and b(z), when combined with
stress solutions (24).

Another ODE results from the velocity equations.
Equations (14e) and (14f) at leading order show that (%)
has no y or z dependence and so is only a function of x.
The volume flow rate (21) then requires that

b
b(z)h(x)’
From flow rules (14b)-(14d), A is a function of
x.  Therefore, from the tension flow rule in the y

direction (14c) along with the symmetry condition (19),
the vertical velocity is found as

v© = y)\(o)sg;}. (29)

Solutions (28) and (29), along with the no-penetration
surface condition (20), results in

\© _ badh/dz
bh2syy)

) (@) = (28)

(30)

which holds not only on the surface but throughout
the entire thickness, given that A(®) is only a function
of x. Similarly, from the tension flow rule in the z
direction (14d) coupled with no-flow normal to the edges
condition (20),

\O) _ badb/dx

= T (31)
Matching (30) and (31) gives an ODE for b(x) as
db bdhp®
S (32)

de hdr )

By solving equations (32) together with (27), b(z) and p(®)
are solved. However, in equation (27) the dependency on
b(xz) can be removed to simplify further; an alternative
ODE for b(z) may be found by replacing u(?) from (28)
and A9 from (31) into flow rule (14b), as

dn  db db s
b 4 B = —p2 2%
dz + dz dz p(0) (33)

Replacing expression (33) into (27) and further simplifying
the resultant using (32) gives

Aoty (dn/de s\ o 1/ dh o
dz _< W 50 "éw”h(_dﬁﬂﬁ(’y):o’ (39
Syy

which is an ODE for the stresses without depending on
the width. From (18), the boundary conditions at leading
order at point A and the roll-gap exit are

4bpoO(z = A) = Fp at point A, (35a)
4bho0(z = 1) = Foy at exit. (35b)

With this, equation (34) can be solved from point A
forward with —ve sign and from the exit backwards with +
sign. Tt is interesting to note from equations (32) and (27)
that b(z), and consequently the width of contact, W,, and
the lateral spread of the wire, W;, depend only on the
initial diameter of the wire, reduction ratio, roll radius,
and friction coefficient, and not on the roll speed on the
material type (e.g. the yield stress ). The influence of
roll speed and material type would become apparent if
hardening were incorporated into the analysis, although
they likely remain negligible in comparison. It is worth
commenting on the order of magnitude of the error. Based
on the scaling in (11) and asymptotic expansion (22),

~

b= hab = ha (b + 66 4+ 0(5?)), (36)

the solution obtained up to the leading order, b(®)
a relative error of order O(9).

, carries

2.4. Summary and numerical evaluation

In this section, a simple numerical procedure for
performing the calculations is detailed.
Equation (34) can be written in terms of p(®) by using

do? B o) ap(®
de  dp® dzx ’

(37)

and replacing stress components from (24) and (15).
As described by equation (35), the force at point A is
necessary for solving the ODE (34). However, it is assumed
that force (and as a result pressure) at point A is the
same as that at the roll-gap entrance. This assumption
will be justified in the following section using FE data,
which shows a pressure drop following the large peak at
the entrance. The exit point in the model is the same as



the roll-gap exit, therefore, Fy,; determines the pressure

at the exit. If there is no exit tension, then O';(L»?L-) becomes

zero at the exit. Otherwise, the value of Ug(c%) at the exit
depends on the final width. In such a case, b at the exit
must be estimated and iteratively refined to align with the
width determined from (32) or (33).

The solution for p(® is chosen to satisfy the forward
and backward tension conditions, which are taken to be
zero for the results presented below. Therefore, p(®
is solved by integrating equation (34) forward from the
entrance with positive sign of friction, and integrating
equation (34) backwards from the exit with positive
sign of friction, using the MATLAB ODE solver ode4b5
(MathWorks, 2024). This is the same solution as the slab
method, and the two curves thus produced are referred to
as the pressure hill, and the intersection determines the
location of the neutral point.

After solving for stresses, b(xz) and consequently the
lateral spread, Wi, is determined by integrating either
equation (32) or (33) from point A to the exit. The
integration is performed using the MATLAB ODE solver
ode45, with the initial condition b(0) = bs. For the rolling
of a cylindrical wire, we assume by = hy = 1, as stated
in section 2.1.1 and further justified in Appendix A, and
consistent with the non-dimensionalisation. Nevertheless,
retaining by explicitly in the governing equations allows
the same model to be applied to subsequent roll stands,
where the initial cross-section is no longer circular but
approximately rectangular with bulged edges. In such
cases, location A corresponds to the roll-gap entrance. As
detailed in the introduction and shown in figure 2, the area
of the rectangular cross-section is assumed to be equal to
that of the actual wire in the roll gap. As a result, the
lateral spread is determined by equating the cross-sectional
area of the real shape to that of the rectangle, with W,
the width in contact with the roll and Wt the total lateral
spread then given by (5) and (6) respectively.

Recall that b in equations (5) and (6) is defined as
b = ﬁAb, where b is determined independently of the
material type. As a result, both W, and W, do not depend
on the wire material. The total computation time varies
depending on the tension at the exit, and is at most in the
order of seconds on a standard laptop. For zero tension,
solving stresses and lateral spread takes 0.1 seconds on a
single core of a 2019 Intel i7-8665U laptop CPU.

3. Experimental Methodology

Experimental verification was carried out using a Hille
25 rolling mill using D2 tool steel rollers with a roll
diameter of 100 mm. The mill operates at a typical speed
of 60 rpm. Stainless steel 316 rods of initial diameters 2.96,
3.96, 5.96 and 7.96 mm were rolled without lubrication at
room temperature to reductions of 30-60% in a single pass.
The initial and final lengths, thicknesses and widths were
all measured using a Mitutoyo 293-240-30 micrometer.

4. Results and discussion

4.1. Lateral spread

The lateral spread prediction, Wt, for both cases,
is plotted in Figure 3 for various diameters and
reduction ratios with 50 mm roll radius. The results
are compared with experimental data, Kobayashi’s
empirical equation (3), and empirical equation (2) due
to Kazeminezhad and Karimi Taheri (2005). The latter
equation is particularly relevant because the parameters
in (2) were fitted for stainless steel. In the current
model, predictions depend on the friction coefficient,
which is challenging to determine experimentally. The
experimental data were obtained under non-lubricated test
conditions, and a friction coefficient of p = 0.25 has been
shown to provide the best agreement with experimental
data, consistent with the range typically reported for flat
rolling of metal wires (Lin et al., 2008; Lee et al., 2018).
Consequently, this value is used for the results in Figure 3.
The current model fails at larger reductions for dy =
2.96 mm and dy = 3.96 mm, as indicated by the unfinished
lines, due to a singularity in pressure (see equation 24);
interestingly, the experiments also encountered difficulties
achieving comparable larger reductions during single-pass
rolling in these cases, and so experimental data in these
cases is also lacking. Where data is available, the model
agrees closely with the experimental data for all diameters
and reduction ratios. Kazeminezhad Equation (2) depends
only on the reduction ratio. While it performs well for
smaller reduction ratios, it deviates for larger values,
with the deviation appearing to depend on wire diameter
(e.g., underestimates for czo = 5.96 mm and overestimates
for dy = 7.96 mm). Kobayashi’s equation depends on
roll radius and wire diameter as well as the reduction
ratio and seems to be derived for small wire diameter
conditions. It underestimates the lateral spread across all
wire diameters, particularly at higher reduction ratios, and
is the least reliable for predicting the set of experimental
data presented in Figure 3.

Some studies suggest that the friction coefficient has
a negligible effect on lateral spread (Carlsson, 1998;
Kazeminezhad et al., 2008), attributing this to the
movement, of lubricant toward the roll edges, driven by
the extremely high contact pressure at the entry point.
Similarly, the empirical equations (2) and (3) exhibit no
dependence on friction. To examine the impact of friction,
the ratio of lateral spread to the initial wire diameter is
plotted in Figure 4 for two different friction coefficients.
In the absence of experimental data under the lubricated
condition, the FE results from Vallellano et al. (2008) are
utilised. The data reported by Vallellano et al. (2008)
corresponds to a wire with a 5 mm diameter, rolled using
75 mm radius rolls, with no applied forward or backward
tension. The yield stress, f’, is assumed to be constant
and equal to 385 MPa the same as the average value in
FE simulations. Vallellano et al. (2008) used the Tresca
friction law, # = m#k with the coefficient of m = 0.25
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Figure 3: Lateral spread for stainless steel wires with different diameters, (fo, and reduction ratios, Jo/(Zle) from different methods;
experimental data, empirical equation 2 from Kazeminezhad and Karimi Taheri (2005), empirical equation from Kobayashi (3), and the

current model. Other parameters used are (R, 1) = (50 mm, 0.25).

to generate their FE results. Generally, the relationship
pu < m/+/3 is used essentially for a simple elastoplastic
model (Zhang and Ou, 2016), where the upper limit,
u = 0.14, is used to transfer m into the Coulomb friction
coefficient, . The data represented by the black line with
circles corresponds to the experimental measurements for
dy = 5.96 mm without lubrication (u = 0.25), while the
counterpart for do = 5 mm is derived from FE simulations
using m = 0.25 (approximated by p = 0.14). To minimise
the influence of different wire diameters in this comparison,
wires with relatively similar diameters were selected, and
the results were scaled by the initial diameter.

The comparison in Figure 4 indicates that friction
does influence lateral spread, particularly at higher
reductions. Greater friction appears to increase lateral
spread. This can be explained by the increased constraint
in the longitudinal direction. Although friction acts
in both the lateral and rolling directions, the lateral
contact length is smaller than the longitudinal contact
length. As a result, friction primarily acts as a

resistance in the rolling direction. This effect is accurately
captured by the current model. For this wire diameter,
Kazeminezhad’s equation correctly predicts lateral spread
for larger friction coeflicients but tends to overestimate the
results for lower friction values. Conversely, Kobayashi’s
equation demonstrates better agreement under low-
friction conditions compared to high friction, although
different roll and wire diameters might also influence this.

4.2. Longitudinal spread
The model can be easily used to predict the final length
of the wire. Since the volume of metal in the wire remains
constant, the wire length varies inversely proportional to
the cross-sectional area. The final length of the flattened
write, L1 can therefore be calculated from
B,
WZ LO = 4b1 hl Ll, (38)
where Ly is the initial wire length, hi is the final half
thickness and b; the final half width from equation (32).
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Figure 5: The initial wire length, along with the final experimental and predicted length for different samples.

Each sample is labelled

according to its initial wire diameter and the ratio of initial diameter to final thickness (for instance, “2.96-1.25” refers to a wire with an
initial diameter of 2.96 mm and a reduction ratio of 1.25). Other parameters used are (R, u) = (50 mm, 0.25).

Figure 5 shows the initial length along with the
final experimental and predicted length for different
samples. Each sample is labelled according to its initial
wire diameter and the ratio of initial diameter to final
thickness (for instance, “2.96-1.25” refers to a wire with
an initial diameter of 2.96 mm and a reduction ratio of
1.25).  Overall, the predicted final lengths show good
agreement with the experimental measurements across
the tested range of samples: the average absolute error
in length prediction is 1.1 mm, and the average relative
error in length prediction is 2%. This confirm that the
model reasonably captures the longitudinal deformation
associated with lateral spread and reduction during wire
rolling.

4.3. Roll pressure

The roll pressure U?(,?J) is found from (24) and plotted
with respect to the contact angle, ¢ in Figure 6 for
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different reduction ratios. Results are compared with
FE simulations from Vallellano et al. (2008), the slab
model from Kazeminezhad and Karimi Taheri (2006) and
the plane-strain slab model for the rolling of thin sheet
in Erfanian et al. (2025). The same parameters as those
used in Vallellano et al. (2008) and described in the
previous section are applied. The results for plane stress
and plane strain are calculated from point A in Figure 2.

FE results for all reductions can be seen to have
two distinct regions; a massive rise between the entrance
and point A and a shallow rise from point A to the
exit. This trend can be explained better when looking
alongside Figure 7 which schematically shows how the
wire looks as seen from the side and above while rolling.
The wire enters between rolls from the right-hand side
with a circular cross-section and exits from the left with
an almost rectangle cross-section, therefore, the contact
surface forms rather like half of an ellipse. As explained
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simulations (Vallellano et al., 2008) and Kazeminezhad and Karimi Taheri (2006) slab method. Plotted for different reduction ratios against

contact angle ¢. Other parameters used are (&, do, R, u) = (385/v/3MPa, 5mm, 75 mm, 0.14).

by Carlsson (1998) when the material starts to deform, flow within the roll gap. Consequently, the results
surrounding parts of the wire are still in the elastic range presented by Kazeminezhad and Karimi Taheri (2006)
and will therefore resist deformation. The situation may show better agreement with the FE data. Yet, despite
be compared to that of an indentation. As a result, the model underestimates the pressure, it consistently
a normal pressure will build up, resulting in a sharp provides accurate predictions of lateral spread. This may
rise in contact pressure soon after the entrance. As be attributed to the importance of the stress ratio s /sy,

deformation continues, larger parts of the wire deform, = — rather than the absolute magnitudes — in governing
reducing resistance from the remaining elastic regions, the lateral deformation of the wire. The model appears
which in turn results in a pressure drop until point A. to capture this ratio correctly, despite discrepancies in

At this point, the material begins to flow laterally, and a individual stress components. Another notable difference
typical friction hill develops, with a pressure peak forming between the FE results and the perfect plastic models in
between this point and the roll exit (Carlsson, 1998). Figure 6 is that the roll pressure starts at zero at the
From the results, it can be seen that the current model entrance and returns to zero at the exit. This behaviour
correctly predicts the location of point A by assuming arises from the inclusion of elasticity in the FE simulations,
that the area of the cross-section at this point is the which is absent in the perfect plastic models.
same as that of the wire before rolling. Both the current
plane-stress model and Kazeminezhad and Karimi Taheri
(2006) correctly predict the roll pressure at point A,

for larger reduct.ions. From point A to .the roll exit, The present model, and indeed the governing equations
the FE results lie between the plane-strain and plane- behind it, depend only on three key non-dimensional
stress predictions, reflecting the presence of 3D material parameters: the friction coefficient u, the aspect ratio

5. Parametric study
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Figure 7: A diagram of the deforming wire, seen from above (top figure) and from side (bottom figure). For symbols, refer to the main text.

Adapted from Figure 3 of Carlsson (1998).

8, and the reduction ratio 2hy/dy (recall hy is the final
half-thickness and dy is the initial wire diameter). The
aspect ratio § = hy/{ characterises the geometry of the

deformation zone, and can also be expressed using (4)
and (7) as

(39)
Here, R/ do is also a non-dimensional parameter, and is
arguably more intuitively connected to the dimensional
rolling problem than is §. In what follows, therefore,
we perform a parametric study by varying the three
independent dimensionless parameters u, 2hy /cio, and
R/dy, with § then calculated using (39).

5.1. Range of validity

The range of validity of model at different reduction
ratios and R/Jo is shown for two friction coefficients in
Figure 8. For each combination of parameters, the valid
range is determined by ensuring the computed normal
stresses (equation (24)) remain real quantities (i.e., the
expression under the square root remains positive). A
more restrictive criterion for defining the range of validity
of the model is to exclude large values of 4, as dictated
by the asymptotic formulation governing the solution
accuracy. By way of indication, the line corresponding
to d = 0.3 is plotted in figure 8, with the region below
this curve corresponding to d > 0.3. Therefore, when
the model is used to predict the width in cases where the
roll and wire sizes are comparable and the reduction ratio
is small, the results should be interpreted with caution,
although some experimental data points presented in
Figure 3 are located in § > 0.3 region and the comparison
in Figure 3 already shows good accuracy.

For a small friction coefficient, the model remains valid
over a wider range of geometric parameters. In contrast,
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increasing the friction coefficient to u = 0.25 considerably
narrows the range of validity, as higher friction amplifies
the p(® term in equation (24).

Overall, the results show that the asymptotic model
is most reliable for small aspect ratios (large é/do) and
moderate reductions, which are representative of practical
wire-rolling conditions. This is also consistent with the
assumption of small § in the asymptotic solution. It is
worth noting that exceeding the max or min lines not
only invalidates the present model (due to the square root
going negative), but also correlates to a lack of obtainable
result, as discussed in section 4.1; it may well be, therefore,
that the physical rolling process undergoes a qualitative
change beyond these parameters, and so these minima and
maxima lines are dictated not by the approximations of the
model but by the physics of the rolling process.

5.2. The effects of parameters on lateral spread

Figure 9 summarises a parametric study of the effect of
different non-dimensional parameters on predicted lateral
spread over the range of validity shown in Figure 8. The
effect of the friction coefficient is shown in the left panel.
Over the examined range p € [0.1,0.3], the width is only
weakly sensitive to changes in friction for the low-reduction
cases do/2h; = 1.25, for any roll sizes (blue and brown
dashed lines). For the larger reduction case do/2h; = 2
the effect of friction is more pronounced (yellow and purple
dashed lines): higher i produces a noticeably larger lateral
spread. Physically, this behaviour reflects that, at small
reductions, material flow is only weakly controlled by
tangential tractions, whereas at larger reductions friction
increasingly impedes longitudinal exit flow and promotes
lateral displacement, so p becomes more influential.

As expected, all curves show a clear monotonic increase
of lateral spread with increasing reduction ratio in the
middle panel of Figure 9. However, the rate of increase is
controlled by both p and R/ dy. For the low-friction case
(u = 0.10, blue and brown curves), the width increases
steadily but tends to flatten for large reductions, while for
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Figure 9: The effect of friction u (left panel), reduction ratio dp/2h1 (middle panel) and roll size R/dy (right panel) on the predicted relative

lateral spread W / (io.

the higher-friction case (u = 0.30, yellow and purple lines)
the width rises much more rapidly with reduction. This
demonstrates that friction amplifies the effect of reduction
on lateral spread.

Finally, on the right panel of Figure 9, the influence
of roll size IA%/JO depends on the reduction and friction.
For the mild reduction case (do/2h; = 1.25, blue and
brown lines), the relative width is almost insensitive to
]A%/ do over the plotted range. By contrast, for the larger
reduction (JO / 2h1 = 2, yellow and purple lines), the
width increases noticeably with ZA%/cZO, and the increase
is larger for higher friction (u = 0.3, purple) than for low
friction (u = 0.1, yellow). A possible interpretation is that
increasing ]:'i/ czo increases the effective contact length and
reduces local curvature effects, allowing more longitudinal
material displacement to be converted into lateral spread
for the higher-reduction cases; the conversion is enhanced
when friction is larger.
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6. Conclusion

This work develops a mathematical framework for
wire rolling, emphasising the accurate prediction of lateral
spread. A general state of deformation is simplified to the
plane-stress deformation with the assumption of a small
width with respect to the length. The set of assumptions
made leads to the simplest possible first-principles model,
which is shown to successfully predict lateral spread across
a range of wire diameters, reduction ratios, and different
friction coefficients. Importantly, this model achieves
accurate predictions without requiring empirical fitting
parameters or assuming additional factors. The validity
of the model is demonstrated by comparison with both
experimental and FE results, and the range of validity is
defined. Interestingly, the range of validity also correlates
with a lack of obtainable experimental result, suggesting
an implication for the physics of the rolling process.

The assumption of plane-stress deformation is not
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Figure 10: Effect of the assumed cross-sectional shape at location A on the predicted lateral spread. Different shapes corresponding to

different values of a = EA/EA are illustrated in the left panel.

strictly satisfied; comparison of roll pressure predictions
with FE results suggests that the actual pressure
distribution falls between that of plane-stress and plane-
strain deformation. A possible explanation for this lies in
the importance of the stress ratio, s,,/s,,, rather than
the absolute stress values, in predicting the lateral spread;
while the model may underestimate individual stresses, it
appears to capture the correct ratio, leading to accurate
predictions of lateral spread.

Nonetheless, having formulated stress and strain
equations in all directions lays the foundation for a more
general model. 3D numerical studies conducted using
ABAQUS software by Carlsson (1998) and Vallellano et al.
(2008) show that the contact pressure distribution is more
complex than the traditional pressure hill profile. Relaxing
the assumption of a small rate of change in width in the
current model would allow the problem to be modelled
under a general stress state. Also, solving the higher order
terms would enable accounting for the curvature of the
edges.

Cold-rolled wire often exhibits a strong texture in
the axial direction, while the texture in the cross-
section can be quite different (Carlsson, 1998). The von
Mises function used to describe the yielding condition
could be replaced with an anisotropic yield criterion
(e.g., Hill’s 1948 yield criterion) with known anisotropy
coefficients. In such a case, the solution structure would
largely remain unchanged, except for the incorporation
of weighted stresses. However, this scenario is of limited
scientific significance because it is the rolling process itself
which induces anisotropy. To accurately capture the
anisotropy effect, it would be necessary for the anisotropy
to evolve throughout the process. This would require
a model describing how deformation induces anisotropy
within the material, thereby adding an additional layer
of complexity to the modelling process and is currently
work in progress. Additionally, further studies are required
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to explore potential correlations between the challenges
faced in experiments when achieving certain reductions in
a single pass and the pressure singularity predicted by the
current model.
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Appendix A. Effect of initial cross-sectional shape

All results here have assumed that when a cylindrical
wire is rolled, it first transforms into a square wire with
aspect ratio BA/EA = a = 1, as this preserves the symmetry
of the cylindrical wire. In this appendix, we further
investigate the effects of this assumption. Figure 10,
computed as described in section 2.4 but for by = a,
shows similar results to figure 4 but details the effect of
varying a on the results of our model. Figure 10 justifies
that the choice of a = 1 not only preserves symmetry
but also gives the most accurate results compared with
experimental results. Similar results were obtained for all
experimental wire diameters, although Figure 10 plots the
experimental results for the cio = 7.96 mm wire as these
showed the greatest variation with a.
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