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Abstract

Impedance eduction methods are the current standard approach to measure the impedance of acoustic liner under sheared
grazing flow. The dedicated facilities for these methods consists on a waveguide with rectangular cross-section, which
implies a sheared grazing flow. A current debate in the literature is the effect of this sheared flow in the impedance
eduction methods. We assess the impact of the flow profile shape on acoustic propagation in a two-dimensional duct
within the typical operating range of impedance eduction facilities. Firstly, a numerical experiment is proposed in which
the Pridmore–Brown equation is assumed to represent the true physical behaviour, and is used with both simplified
flow profiles commonly used in the literature and a realistic representation of a turbulent boundary layer using a van
Driest universal law of the wall model. The data from these numerical experiments are then used with a traditional
impedance eduction process, and the resulting variation in obtained impedances are investigated. Secondly, we apply
a less-traditional impedance eduction method that incorporates the sheared velocity profile to data obtained from real-
world experiments. The results suggest that the Ingard–Myers boundary condition remains a good approximation to a
realistic boundary layer profile, such as the universal law of the wall, at least in the two-dimensional case. However, it is
also shown that the simplified flow profiles often used in the literature can lead to significant deviations from the results
obtained using a realistic velocity distribution.
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1. Introduction

While the ERI method allows to localize defects that
are not in direct view from the transducers, it is useful
to also examine its performance for a defect in direct
view. Numerical experiments are performed in the same
reference medium, with a local density anomaly inserted
this time in front of the transducer array. Corresponding
images are presented in Figure 6 for different window
durations.

Acoustic liners are acoustic treatments applied to the
walls of aircraft turbofan engine nacelles to mitigate fan
noise. The simplest and most typical liner construction
consists of a honeycomb structure with a hard backplate
and a perforated facesheet [1]. An acoustic liner is
typically characterised by its locally-reacting acoustic
impedance, Z̃(ω) = θ+iχ, where θ is the resistance and χ
is the reactance. This frequency-dependent parameter can
be used as a boundary condition in simulations of aircraft
engine noise, avoiding the still prohibitive computational
cost of explicitly modelling an acoustic liner.
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The impedance of an acoustic liner is known to depend
on its geometry [2], as well as on operational conditions
such as the grazing flow velocity and profile [3], and the
incident Sound Pressure Level (SPL) [4]. Therefore, for
proper liner characterisation, experiments must replicate
the conditions inside a turbofan engine, and this is
traditionally carried out using the so-called in-situ
technique (or Dean’s method) [5] or impedance eduction
methods [6–8]. While the in-situ technique provides a
local value of the liner impedance, impedance eduction
techniques give an averaged impedance as seen by the
acoustic field and are experimentally simpler to implement
than the in-situ technique. As a result, impedance
eduction has been preferred by the academic community
[e.g. 9, 10]. Impedance eduction methods rely on a
model for acoustic propagation in ducts, inferring the
impedance from the model by best fitting the model
results to the experimental data. Uniform flow and the
Ingard–Myers boundary condition are the most common
modelling assumptions. However, recent findings have
sparked academic debate regarding the application of such
assumptions.

One of the fundamental issues recently observed is
that educed impedance depends on the direction of wave
propagation relative to the mean flow, which constitutes



a violation of the locally reacting hypothesis. This
behaviour has been systematically captured by different
laboratory facilities using both inverse and direct methods,
as summarised by Bodén et al. [11]. Renou and Aurégan
[12] were the first to demonstrate such discrepancies and
attributed them to a failure of the Ingard–Myers boundary
condition. Since then, other studies have suggested
that an additional parameter, other than the impedance,
is necessary to fully characterise acoustic liners in the
presence of flow, such as a shear stress at the wall [13, 14],
or the effect of viscosity [15].

Another line of research involves substituting the
traditional uniform flow hypothesis with a shear flow
profile. Despite the three-dimensional nature of internal
flows, most authors start by making a simplification
and consider a two-dimensional representation of the
computational domain, which implies a one-dimensional
flow profile [14, 16–18]. The classical analysis by
Pridmore-Brown [19] established the formulation of sound
propagation in ducts with sheared flow, providing
the theoretical foundation for subsequent developments.
Later, Brooks and McAlpine [20] extended this framework
to examine the transmission of sound in ducts with realistic
turbulent shear layers, focusing on the dispersion and
attenuation characteristics of the acoustic modes. While
Weng et al. [14] and Yang et al. [18] showed that shear
effects become increasingly relevant at higher frequencies
and larger Helmholtz numbers, many studies still rely
on simplified flow profiles for computational convenience.
Roncen et al. [21] revealed significant differences in
wavenumbers between uniform flow solutions and those
using two-dimensional sheared profiles, indicating that
simplifications can introduce bias errors related to the
upstream-downstream impedance discrepancy. However,
despite highlighting these discrepancies, Roncen et al.
[21]’s subsequent impedance eduction still used a simplified
one-dimensional profile, potentially undermining the
accuracy of their conclusions. Since the early work of
Nayfeh et al. [22], it has been generally assumed that
matching the boundary layer displacement thickness is
sufficient for predicting acoustic behaviour in downstream
propagation; however, Nayfeh et al. [22] also showed
that for upstream propagation, the flow shape factor
can significantly influence sound attenuation and wave
propagation. Gabard [23] also investigated the effect
of sheared velocity profiles, but in contrast, concluded
that while “the boundary layer thickness can have a
significant impact on sound absorption, . . . the boundary
layer profile is found to have little influence on sound
absorption.” All of these studies primarily addressed
propagation and absorption in large-scale ducts or
benchmark configurations, rather than the inverse problem
of impedance eduction in small, plane-wave ducts typical
of laboratory experiments.

More recently, Weng et al. [24] compared impedance
eduction techniques under uniform and sheared flow condi-
tions, using a measured turbulent profile representative

of their experimental setup; they focused on a single
measured profile, and did not investigate how different
boundary-layer shapes might affect impedance eduction
outcomes.

The present work builds upon these foundations by
explicitly quantifying how the shape of the velocity
profile—modelled through sinusoidal, hyperbolic tangent,
and van Driest formulations—affects impedance eduction
results obtained from both direct and inverse methods.
By systematically varying the flow-profile shape under
controlled numerical and experimental conditions, the
study isolates the role of the boundary-layer distribution
in the impedance eduction process, thereby extending
the understanding of shear-flow effects to the low-
Mach-number, small-duct regime relevant to experimental
liner characterisation. This effect may help explain if
the assumption of a uniform flow has a role in the
current debate regarding the upstream and downstream
discrepancy. In order to achieve this goal, a numerical
experiment approach is proposed. The solution of the
Pridmore–Brown equation [19] is assumed as the exact
solution for the acoustic field propagating over a sheared
mean flow, from which the axial wavenumbers in an infinite
two-dimensional duct are obtained. These wavenumbers
are then used in the traditional straightforward impedance
eduction routine [7], assuming uniform flow and the
Ingard–Myers boundary condition. In addition, a
parametric study is conducted within the scope of this
numerical experiment to evaluate the impact of the test rig
duct width and the average Mach number on the accuracy
of the Ingard–Myers boundary condition. Finally, we
employ an iterative impedance eduction method on
experimental data, similar to the one used by Roncen
et al. [21], to analyse the impact of different flow velocity
profile distributions on impedance eduction, comparing
these results with the estimates provided by the Ingard–
Myers boundary condition.

This document is organised as follows. Section 2
presents the governing equations for duct acoustics with
grazing flow. Section 3 describes the flow velocity
distributions considered. The setup for the numerical
experiments is detailed in Section 4. The main theoretical
results are discussed in Section 5, while application to
experimental data is presented in Section 6. Finally, the
primary conclusions are summarised in Section 7.

2. Governing equations

For the purpose of this study, we consider the infinite
2D duct depicted in Fig. 1. The duct cross-section has
width W . An axial flow with velocities profile u0 = U0(x)k̂
is assumed, where k̂ is the unitary vector in z axis, which
implies that the flow profile has no dependence on the axial
direction. The wall located at x = −W/2 has a locally-
reacting frequency-dependent impedance Z(ω), while the
other wall at x = W/2 is acoustically rigid.
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Figure 1: Schematic duct and coordinates system assumed in this
work.

By considering linear perturbations and constant mean
density and sound speed, while neglecting visco-thermal
effects, the in-duct acoustic propagation can be described
by the Pridmore–Brown equation (PBE) [19], such that

(iω + u0 · ∇)

(
1

c20
(iω + u0 · ∇)2p̃′ −∇2p̃′

)
+ 2

∂

∂z

(
∇p̃′ ·∇ U0

)
= 0, (1)

where p̃′ is the acoustic pressure, ω is the frequency
(exp(iωt) dependence assumed), c0 the speed of sound, i =√
−1 the complex imaginary unity and ∇ = (∂/∂x, ∂/∂z).

Given the axial invariance of the problem, we can
assume an axial modal solutions on the form p̃′(x, z) =
p̃′(x) exp(−ikzz), where kz is the axial wavenumber, so
that Eq. (1) can be written as(

∇2
⊥ +

ω2

c20

)
p̃′−kz

(
U0

ω
∇2

⊥ − 2

ω
∇⊥U0 · ∇⊥ +

3ωU0

c20

)
p̃′

− k2z

(
1− 3U2

0

c20

)
p̃′ − k3z

[
U0

ω

(
U2
0

c20
− 1

)]
p̃′ = 0, (2)

where ∇⊥ = (∂/∂x, 0). As boundary conditions, at rigid
walls the normal acoustic velocity u′ vanishes, such that

u′ · n̂ = 0, (3)

where n̂ is a unitary normal vector pointing into the
wall. Since non-slip flows are assumed, the locally reacting
impedance boundary condition can be written as

Z =
1

ρ0c0

p̃′

u′ · n̂
, (4)

where the air characteristic impedance ρ0c0 is used as a
normalisation factor and ρ0 is the air density. For the two-
dimensional duct assumed in this work, n̂ = î at x = W/2,
where î is the unitary vector in x axis, and n̂ = −̂i at
x = −W/2. For later convenience, we also introduce the
distance to the wall ξ = W/2− |x|.

2.1. Eigenvalue problem
In this section, we seek to describe the governing

equations as a generalized eigenvalue problem. One can
rewrite the PBE (Eq. (2)) in a discrete version as

(A0 +A1kz +A2k
2
z +A3k

3
z)p̃ = 0, (5)

where the Aj terms involve differentiation in x and
multiplication by the frequency ω and the mean flow U0

and its x-derivatives. In the present work, we follow a
strategy similar to Boyer et al. [25], where the problem is
discretised by projecting onto a Gauss–Lobatto grid using
Chebyshev polynomials as basis, with (5) required to hold
at each grid point (a pseudo-spectral method). Finally,
to solve the cubic generalised eigenvalue problem given
by Eq. (5), auxiliary variables are introduced of the form
p̃p = kzp̃p−1 for p > 0, and the resulting linear eigenvalue
problem is solved using the QZ algorithm [26, p. 129].

In order to apply a lined wall boundary condition to
the generalised eigenvalue problem, we rewrite Eq. (4) as

dp̃′

dx
nx +

iω

c0Z
p̃′ = 0, (6)

where nx = −1 at x = −W/2. For the hard wall opposite
to the liner, the corresponding boundary condition is

dp̃′

dx
= 0. (7)

If a uniform flow is assumed, i.e. U0 ≡ Mc0 = constant,
where M is the bulk (average) Mach number, the PBE
reduces to the Convected Helmholtz Equation (CHE),

∇2p̃′ +

(
k0 − iM

∂

∂z

)2

p̃′ = 0. (8)

where k0 ≡ ω/c0 is the free-field wavenumber. For lined
walls, the slip velocity at the wall is taken into account
by means of the Ingard–Myers Boundary Condition
(IMBC) [27, 28], leading to

∂p̃′

∂x
=

1

ik0Z

(
ik0 +Mw

∂

∂z

)2

p̃′, (9)

where Mw is the slipping velocity at the wall, and so Mw =
M for a uniform flow. For a non-slip flow, Mw = 0, and
Eq. (9) reduces to Eq. (6).

2.2. Impedance eduction
In this work, we consider the traditional straight-

forward wavenumber based impedance eduction first
proposed by Jing et al. [7]. Applying the IMBC (Eq. (9))
on the lined wall and Eq. (6) on the rigid walls of the CHE
solution leads to the eigenvalue problem

kx tan(kxW )− 1

ik0Z
(ik0 − iMkz)

2
= 0, (10)

where kx is the transverse wavenumber given by the
dispersion relation

k2x = (k0 −Mkz)
2 − k2z . (11)

Once the axial wavenumber is known, it is straightforward
to calculate the liner impedance from Eqs. (10) and (11).
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3. Velocities profile shape functions

The simplest formulation considered in this work is the
sinusoidal flow profile, as presented by Gabard [23]. In this
case,

U0(ξ)

c0
=

Ms sin
πξ

2δs
, 0 ≤ ξ ≤ δs

Ms, ξ > δs,
(12)

where Ms is the free-stream Mach number, and δs is a
boundary layer thickness parameter.

Another commonly employed formulation in the
literature is the hyperbolic tangent profile introduced by
Rienstra and Vilenski [29], and used by Roncen et al.
[21] in their work on 2D flow profile effects on impedance
eduction. This profile is given by

U0(r)

c0
= Mc

[
tanh

(
1− r

δt

)
(13)

+(1− tanh (1/δt))

(
1 + tanh (1/δt)

δt
r + (1 + r)

)
(1− r)

]
,

where Mc is the centreline Mach number, r is the radial
position, and δt is a boundary layer thickness parameter.
In this work, we use the coordinate transformation r =
2|x|/W to obtain the flow profiles in the x coordinate
system.

We also aim to consider a more realistic representation
of a turbulent boundary layer velocity profile. One may
express the boundary profile over a smooth wall using a
universal wall law, which, according to van Driest [30], is
given by

U+ =

∫ y+

0

2

1 +
√
1 + 4κ2y+2(1− exp(−y+/A+))2

dy+ +Π,

(14)
where U+ ≡ U0/uτ is the flow profile normalised by the
friction velocity uτ , κ ≈ 0.42 is the von Kármán constant,
A+ ≈ 27 is the van Driest constant, and y+ = ξuτ/ν
is the distance from the wall, ξ, normalised to viscous
lengths, with ν being the air kinematic viscosity. As will be
discussed later, for the small ducts considered in this study,
the boundary layer can extend the entire half-duct width.
To ensure that the derivative of the profile is continuous
at the duct centreline, we propose adding a cubic term to
Eq. (14), denoted by Π, which is given by

Π =
2(y+max − y+)

1 +

√
1 + 4κ2y+max

2
(1− exp(−y+max/A+))2

(
y+

y+max

)2

,

(15)
where y+max = Wuτ/ν/2 is the distance from the wall
to the centreline in viscous lengths1. One of the
simplest formulations for the boundary layer shape is

1Another option would be the application of blending functions,
as has been done by Yang et al. [18]

the assumption of a linear variation. However, for the
purposes of this work, the linear flow profile is not
advantageous, as, although it is continuous, its first
derivative is not continuous, which compromises the
convergence of the pseudospectral method used in this
study [26, p. 32]. Therefore, we will not use it. Another
common simplification for the flow profile shape is the
inverse power law, which provides a good approximation of
a turbulent boundary layer [18, 22]. However, the inverse
power law formulation has a problem since the velocity
gradient near the wall tends to infinity. One could avoid
this problem either by solving for acoustic displacement, as
done by Yang et al. [18], which implies that the gradient of
the mean flow does not appear explicitly in the equation,
or by adding a linear sub-layer near the wall [e.g. 22],
which would result in an additional discontinuity in the
derivative. Both solutions add complexity to this problem,
and neither is as accurate as using the turbulent wall law
formulation from Eq. (14).

The boundary layer thickness is often quantified by
its displacement thickness or momentum thickness. The
boundary layer displacement thickness is the distance by
which the external flow must be displaced to account for
the reduction in flow caused by the boundary layer, and is
defined as

δ∗ =

∫ ∞

0

(
1− U0(x)

U∞

)
dx, (16)

where U∞ is the free-stream velocity, which for the purpose
of this work is U∞ = U0(0). The boundary layer
momentum thickness is a measure of the loss of momentum
within the boundary layer due to viscous effects and is
given by

θ =

∫ ∞

0

U0(x)

U∞

(
1− U0(x)

U∞

)
dx. (17)

Another important quantity is the boundary layer shape
factor, which is the ratio of the displacement thickness to
the momentum thickness, defining the shape of the velocity
profile within a boundary layer, hence given by

H =
δ∗

θ
. (18)

Note that the shape factor is independent of the boundary
layer thickness, and so is a property of the boundary layer
flow profile’s shape only. For the flow profiles considered in
this work, the shape factors are 1.25, 2.34 and 2.66, for the
law of the wall, hyperbolic tangent and sinusoidal profile,
respectively.

4. Numerical setup

In this work, we consider a small rectangular duct,
representative of traditional liner impedance eduction
facilities [9, 10, 12, 14]. Initially, we consider the
dimensions of the Liner Impedance Test Rig from the
Federal University of Santa Catarina (LITR/UFSC),
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which has a rectangular cross-section with a width of
W = 40mm.

For the lined wall impedance, two reference impedances
are considered. First, we use the impedance given by

ZSDOF(ω) = 2− i
(
cot (k0h)− (0.03k0)

2
)
, (19)

with h = 35mm, which is representative of a typical
Single-Degree-Of-Freedom (SDOF) liner in the considered
frequency range, and is shown in Figure 2a. Additionally,
one of the reference impedances considered by Roncen
et al. [21] is replicated in this work. The impedance
modelling the ceramic liner CT57 was digitized for use in
this study and is denoted ZCT57, as presented in Figure 2b.
The typical range for impedance eduction, from 500 to
3000Hz, with a 50Hz step, is used for ZSDOF, while a
reduced range from 500 to 1800Hz is used for ZCT57 due
to the range of frequencies for which data is available.

For the velocity profiles, we consider the three
formulations presented in Section 3. The turbulent
universal wall law, given by Eq. (14), with ν = 1.48 ×
10−5 m2/s and uτ = 3.956m s−1, is selected as the
baseline case. This corresponds to the fit of Eq. (14) to
experimental data gathered at the LITR/UFSC, allowing
for the comparison of different flow profile formulations
with a realistic velocity distribution in a typical liner test
rig duct. This leads to an average Mach number over the
1D cross-section of M = 0.279, a boundary layer thickness
of δ99% = 15.72mm, and a boundary layer displacement
thickness of δ∗ = 1.70mm.

We aim to reproduce the study of Nayfeh et al. [22]
in the context of impedance eduction. To do so, we first
need to find the parameters for the hyperbolic tangent
and sinusoidal flow profiles that match the same average
Mach number M and boundary layer thickness δ99.9%

as the baseline case. This results in different boundary
layer displacement thicknesses δ∗ for each flow profile
formulation, which is expected to lead to different acoustic
fields. The parameters obtained for both the hyperbolic
tangent and sinusoidal flow profiles are summarized in
Table 1, along with the resulting δ∗ for each case. The
different flow profiles are compared to the experimental
data gathered at the facility in Figure 3, where the
derivative of the velocity distribution is also presented.

Next, we consider the case where the different velocity
distributions share the same average Mach number and
boundary layer displacement thickness δ∗. The parameters
obtained for both the hyperbolic tangent and sinusoidal
flow profiles under this new condition are summarized in
Table 2, along with the resulting δ99%. The resulting flow
profiles are once again compared to the experimental data
in Figure 4.

The number of points in the computational domain
used for the pseudospectral solver was determined based
on the critical case, which, for this study, corresponds to
the universal wall law due to its high gradient near the
walls. The assessment of the convergence of the numerical
grid is detailed in Appendix A.

5. Theoretical results and discussion

5.1. Effects of flow profiles on axial wavenumbers
First, we examine the wavenumbers obtained from

the Pridmore–Brown equation for different velocity profile
shapes, all with the same boundary layer thickness,
δ99%, and average Mach number M . These results
are compared with the wavenumbers derived from the
Convected Helmholtz equation with the Ingard–Myers
boundary condition, which models the physics within the
boundary layer considering the average Mach number.
For brevity, we focus initially on the case of ZSDOF.
The wavenumbers for the least attenuated mode, for
both upstream (k−z ) and downstream (k+z ) propagation
are presented in Figure 5. In this work, only the least
attenuated mode is considered, as it is likely to dominate
in the traditional impedance eduction range (i.e., low
Helmholtz number and small ducts). However, this
assumption may not hold for novel facilities designed
to target higher-order mode eduction [18, 31]. Results
suggest good agreement between all considered velocity
profiles and the predictions from the CHE-IMBC for the
real component of the wavenumber in both propagation
directions. However, for the imaginary component of
the wavenumber, which corresponds to the attenuation
rate, significant differences are observed between the
wavenumbers obtained for the hyperbolic tangent and
sinusoidal flow profiles, compared to those obtained for
the more realistic distribution given by the universal wall
law, particularly for upstream propagation. On the other
hand, good agreement is observed between the CHE-
IMBC solution and the PBE solutions. This suggests
that the IMBC may provide a good approximation for
the typical range of frequencies and duct dimensions of
impedance eduction. A possible explanation is that,
due to the high gradient near the wall, even though
the velocity distribution extends nearly across the entire
duct half-width, the region where refractive effects are
significant is confined to a much thinner region, making the
infinitely thin hypothesis of the IMBC more appropriate
than originally suggested.

Next, we consider the case where the different velocity
distributions are adjusted to match the average Mach
number and the boundary layer displacement thickness,
δ∗, rather than the boundary layer thickness, δ99%. This
approach is expected to improve the agreement between
the acoustic attenuation predicted by the different flow
profiles, particularly for downstream propagation [22].
The wavenumbers for the least attenuated mode in both
upstream and downstream propagation are shown in
Figures 6 and 7, for the impedances ZSDOF and ZCT57,
respectively.

As expected, a better agreement is observed for
the wavenumbers obtained for the different velocity
distributions, especially for downstream propagation.
However, for upstream propagation, the wavenumbers
for the hyperbolic tangent and sinusoidal flow profiles
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Figure 2: Reference impedances for numerical experiments. (a) SDOF-like; (b) digitalization of CT57 from Roncen et al. [21].
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Figure 3: Flow velocities profiles in linear (a) and logarithmic (b) scales, and velocity gradients in linear (c) and logarithmic (d) scales,
considered in the first step of this work. Hyperbolic tangent and sinusoidal flow profiles are best fitted to match the bulk Mach number and
boundary layer thickness of the law of the wall.
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Figure 4: Flow velocities profiles in linear (a) and logarithmic (b) scales, and velocity gradients in linear (c) and logarithmic (d) scales,
considered in the first step of this work. Hyperbolic tangent and sinusoidal flow profiles are best fitted to match the bulk Mach number and
boundary layer displacement thickness of the law of the wall.
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Figure 5: Wavenumbers obtained for the SDOF-like impedance with different velocities distributions for the same M and δ99.9%.
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Figure 6: Wavenumbers obtained for the SDOF-like impedance with different velocities distributions for the same M and δ∗.
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Table 1: Resulting parameters for velocities profile formulations fit to baseline case average Mach number and δ99%. Baseline case corresponds
to universal wall law with ν = 1.48× 10−5 m2/s and uτ = 3.956m s−1.

Velocities Profile Adjusted Parameters Resulting δ∗ δ99%

Hyperbolic Tangent Mc = 0.363 δt = 0.3546 4.66mm 15.72mm
Sinusoidal Ms = 0.406 δs = 17.3mm 6.28mm 15.72mm

Table 2: Resulting parameters for velocities profile formulations fit to baseline case average Mach number and δ∗. Baseline case corresponds
to universal wall law with ν = 1.48× 10−5 m2/s and uτ = 3.75m s−1.

Velocities Profile Adjusted Parameters Resulting δ99% δ∗

Hyperbolic Tangent Mc = 0.305 δt = 0.1227 6.50mm 1.70mm
Sinusoidal Ms = 0.305 δs = 4.7mm 4.26mm 1.70mm

agree well with each other, and subtle differences are
observed compared to the solution for the wall law and the
prediction for the CHE-IMBC. These initial results suggest
that assuming a uniform flow and compensating for the
refraction within the boundary layer using the Ingard–
Myers boundary conditions provides better estimates of
the acoustic field in impedance eduction facilities under
typical test conditions, compared to solving for an explicit
velocity distribution that is not representative of realistic
conditions. Nevertheless, since the observed differences
are subtle, it remains to be assessed whether they are
significant in terms of impedance eduction, as will be
investigated in the following.

It is worth noting that the difference between
the wavenumbers obtained for the wall law velocity
distribution and the estimation obtained with CHE-
IMBC is notably higher at the lower frequency range
for the impedance ZCT57, as shown in Figure 7d. To
investigate this, we propose analysing the error between
the estimation from the CHE-IMBC, kz,CHE, and the exact
solution from the PBE, kz,PBE, defined as

error =
|kz,PBE − kz,CHE|

kz,PBE
, (20)

in the complex impedance plane. We fix the frequency
at 550Hz and consider the resistance range θ ∈ [0, 5]
and the reactance range χ ∈ [−5, 5]. The three flow
profile formulations are considered, and the corresponding
contour plots are shown in Figure 8.

Results suggest that the error function is almost zero
for the majority of the considered impedance plane, with
the notable exception of the region defined by resistances
smaller than 1 and reactances between -2 and 0. This
frequency range lies close to regions previously identified
as being susceptible to surface-mode degeneracies and
double roots [32], which are known to compromise the
stability and well-posedness of the Ingard–Myers boundary
condition [33]. While a definitive modal crossing cannot
be confirmed here, this mechanism provides a plausible
explanation for the increased uncertainty observed.

5.2. Effects of flow profiles on impedance eduction
The next step, which is the main goal of this study,

is to evaluate the impact of considering different flow
velocity profiles on the evaluation of the acoustic field in
impedance eduction. As discussed in Section 2.2, we use
the wavenumbers obtained for the least attenuated mode,
considering the different velocity profiles, in the classical
straightforward impedance eduction routine. This routine
assumes uniform flow and the Ingard–Myers boundary
condition to model the slip velocity at the wall. For the
sake of brevity, from this point on, we will focus solely
on the impedance ZSDOF, as it is a more representative
case of typical acoustic liners’ impedance. The impedances
educed with the proposed numerical experiment using
Eqs. (10) and (11), along with the wavenumbers obtained
for the different velocity profiles in the PBE, are shown in
Figure 9.

The impedances educed using the wavenumbers
obtained from the solution of the hyperbolic tangent
and sinusoidal flow profiles exhibit a similar trend
regarding the mismatch observed experimentally between
upstream and downstream acoustic sources (downstream
and upstream propagation, respectively). At lower
frequencies, the upstream source case results in a lower
resistance, with the opposite trend observed at higher
frequencies. This behaviour is similar to what has been
observed by Roncen et al. [21]; however, in our case, the
reference impedance is not the midpoint between the two
curves. For the most realistic flow profile, the wall law, the
conclusions differ significantly. At the lower frequency end,
the assumption of uniform flow with the IMBC introduces
a small bias for both acoustic source positions, with good
agreement observed between them. At higher frequencies,
the curves diverge, with the upstream source (downstream
propagation) surprisingly showing a greater deviation from
the reference impedance.

The trends observed in Figure 9 indicate a
clear frequency-dependent behaviour of the impedance
eduction. At lower frequencies, the resistance tends to
be overpredicted for all flow-profile assumptions, whereas
at higher frequencies it is systematically underpredicted.
This behaviour appears largely independent of the specific
velocity profile and suggests that it is primarily associated
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Figure 8: Contour plots of the error of assuming the Ingard–Myers boundary condition as a simplification of different velocities profile
formulations. Red "X" denote the value of the CT57 impedance at 550Hz. (a) Universal Law of the Wall; (b) Hyperbolic Tangent and; (c)
Sinusoidal.

with the limitations of the uniform-flow + IMBC
approximation rather than with the detailed structure of
the boundary layer.

Differences between flow-profile assumptions become
more pronounced at higher frequencies, where the educed
impedance shows increased sensitivity to the near-wall
velocity gradient. In this regime, simplified sheared
profiles lead to larger deviations, while the wall-law profile
yields results closer to the reference case. The larger
upstream–downstream discrepancy observed for the wall-
law case and the change in trend around 1.6–1.7 kHz
are consistent with a transition toward increased modal
sensitivity in the duct.

The results obtained so far in this work suggest that
the shape of the velocity profile considered when solving
for the acoustic field in small ducts with lined walls plays a
significant role. Additionally, the Ingard–Myers boundary
condition provides better estimations, when compared to
the exact solution for simplified velocity distributions.
However, a single duct geometry and a single average Mach
number have been considered. In what follows, we propose
a parametric study on the duct geometry and bulk Mach
number impact on our conclusions.

5.3. Parametric study
In this section, we analyse the sensitivity of the

IMBC accuracy to variations in the average Mach number
and duct width through a parametric analysis. This

is particularly important given that recent impedance
eduction facilities are moving toward higher bulk Mach
numbers and larger duct cross-sections, often with a
specific focus on multimodal acoustic propagation (e.g. [18,
31]). We consider the wavenumbers obtained by solving
the PBE and the flow profile described by the universal law
of the wall. Furthermore, the thickness of the boundary
layer may influence the accuracy of the Ingard–Myers
boundary condition. However, since it has been observed
that the universal law of the wall formulation used in this
work can extend to the entire half-width of the duct, the
boundary layer thickness in this case is a function of both
the duct width and the viscosity. To produce significant
variations in δ by changing the viscosity ν, non-realistic
values would need to be considered. For this reason, we
have decided not to include the boundary layer thickness
as a parameter in this parametric analysis.

First, we examine the effect of the average Mach
number. The duct width is set to W = 40mm, and
the air viscosity is ν = 1.48m2/s. The friction velocity
was adjusted to vary with the average Mach number,
and the values considered are presented in Table 3. The
impedances educed for the different average velocities are
shown in Figure 10.

The results indicate that the deviation in the educed
impedance obtained using a uniform-flow model combined
with the Ingard–Myers boundary condition increases with
the bulk Mach number, particularly for the resistance.
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Figure 9: Educed impedances obtained for the wavenumbers evaluated for the PBE considering different velocities profile shapes with the
impedance ZSDOF at the lined wall. Velocities profiles match the universal wall law with uτ = 3.95m s−1, in average Mach number and
boundary layer displacement thickness δ∗. US - Upstream Source (downstream propagation), and; DS - Downstream Source (upstream
propagation). (c) plots the difference between the reactances and the reference reactance that are plotted in (b).
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Figure 10: Parametric study on the effect of the average Mach number. Impedances educed with the IMBC for the wavenumbers obtained for
the exact solution of the PBE with a realistic flow profile. Solid lines: downstream acoustic source; dashed lines: upstream acoustic source.
(c) plots the difference between the reactances and the reference reactance that are plotted in (b).
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Table 3: Friction velocities uτ considered for the parametric analysis
as a function of the average Mach number M for a duct width of
W = 40mm.

M 0.20 0.25 0.30 0.40 0.50
uτ [ms−1] 2.93 3.58 4.23 5.49 6.73

Table 4: Friction velocities uτ considered for the parametric analysis
as a function of the duct width W for an average Mach number of
0.279.

W [mm] 30 40 50 60 70
uτ [ms−1] 4.06 3.95 3.87 3.81 3.76

Here, the impedance obtained using the PBE with a
realistic turbulent flow profile is treated as the reference
solution. This aligns with the observations from
the evaluation of the wavenumbers, where the largest
differences are noted in the imaginary component of the
wavenumber. As with the resistance, the imaginary
component is related to acoustic dissipation. These
findings are consistent with previous studies reported in
the literature [18].

Next, we examine the effect of the duct width—and
consequently, the boundary layer thickness—on the
accuracy of the IMBC for impedance eduction. This
analysis considers the typical dimensions of traditional
liner impedance eduction facilities, which typically feature
duct widths smaller than 70mm. Novel approaches, such
as curved [34] and multimodal [35] duct configurations, are
not considered in this study. The average Mach number is
fixed at the same value as the baseline case, M = 0.279,
and the friction velocity is adjusted for each considered
duct width. The duct width values and corresponding
friction velocities are summarised in Table 4, while the
educed impedances for the different cases are presented in
Figure 11.

The results suggest that the accuracy of the IMBC
decreases with increasing duct width, particularly in
predicting the resistive component of the impedance. For
the reactance, larger errors are observed at the higher
frequency range, especially for the downstream acoustic
source (upstream propagation). These findings align with
expectations, as an increase in duct width leads to a
corresponding increase in the dimensional boundary layer
thickness. This deviates further from the infinitely thin
boundary layer assumption of the IMBC.

5.4. Summary of theoretical results
Summarizing the numerical results presented in the

preceding sections:

• Matching the bulk Mach number and boundary-layer
displacement thickness is not sufficient to ensure the
same acoustic field across different velocity-profile
shapes;

• For typical impedance eduction test facilities,
a better approximation to the acoustic field
in a realistic turbulent flow profile is provided
by assuming uniform flow combined with the
Ingard–Myers boundary condition than assuming a
sheared flow with a simplified flow profile, and;

• The error associated with the uniform-flow + IMBC
assumption tends to increase with increasing bulk
Mach number and boundary-layer thickness and/or
duct height.

6. Application to Experimental Data

Finally, we propose to extend the analysis of this study
to experimental data gathered at the Liner Impedance
Test Rig of the Federal University of Santa Catarina
(LITR/UFSC). The test rig’s test section consists of
modular rectangular cross-sectioned ducts measuring 40×
100mm2 (i.e., W = 40mm). Quasi-anechoic terminations
at the test rig inlet and outlet minimise acoustic
reflections. Eight Beyma CP-855nD compression drivers
are distributed both upstream and downstream of the liner
test sample holder to generate sound fields up to 150 dB,
propagating either with or against the flow towards the
liner sample.

An external compressed air system provides the flow
supply, capable of sustaining a cross-section averaged flow
up to Mach 0.7. A Pitot tube located at the test rig inlet
is used to control and monitor the flow Mach number
during tests. The average Mach number in the lined
section is derived from the Pitot tube measurement using
a pre-calibrated factor determined through a quadrature
method, as defined by the standard ISO 3966:2008[36],
with a 5 by 5-points grid. The liner sample holder has
an opening for liner samples with a maximum length of
420mm.

An array of sixteen equally spaced flush-mounted
B&K DeltaTron 4944 1/4" pressure field microphones
is installed on the wall opposite the liner section for
impedance eduction. The spacing between consecutive
microphones is 20mm. In this work, half of the
microphones are skipped, resulting in an effective
separation of 40mm to reduce uncertainties in the
lower attenuation range of the liner [37]. Signals are
recorded using a National Instruments PXIe-4499 data
acquisition (DAQ) module at a sampling rate of 25.6 kHz.
Measurements are conducted using a harmonic excitation
signal, which also serves as a reference for cross-spectrum
estimation using Welch’s method, with 30 averages of
25 600 samples and 75% overlap. All hardware control,
signal processing, and data post-processing are performed
using in-house Python3 code.

Two liner samples are employed in this study, referred
to as samples A and B. Both samples are typical single-
degree-of-freedom liner constructions, each with a length
of 420mm. A summary of the relevant parameters for
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Figure 11: Parametric study on the effect of the duct width. Impedances educed with the IMBC for the wavenumbers obtained for the exact
solution of the PBE with a realistic flow profile. Solid lines: downstream acoustic source; dashed lines: upstream acoustic source. (c) plots
the difference between the reactances and the reference reactance that are plotted in (b).
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Table 5: Liner samples parameters. σ - percentage of open area; h -
cavity height; d - holes diameter, and; t - perforate sheet thickness.

Parameter σ [%] h [mm] d [mm] t [mm]
Sample A 5 40 1.2 1
Sample B 12 25.4 0.835 1

both samples is presented in Table 5. For both samples, no
significant non-linear effects due to the SPL are expected.

Tests were conducted under three different flow
conditions: in the absence of flow (M = 0); and with
bulk Mach numbers (area-averaged) of M = 0.2 and
M = 0.3. A stepped pure-tone excitation was employed in
a frequency range from 500Hz to 3000Hz, with increments
of 100Hz. The sound pressure level was set to 130 dB for
the plane wave amplitude propagating towards the liner,
with the acoustic source positioned either upstream or
downstream (one at a time) of the liner.

We consider four cases for impedance eduction using
the experimental acoustic field. First, we examine the
traditional straightforward method, which assumes that
acoustic propagation is governed by the CHE and that
the Ingard–Myers boundary condition applies to the lined
walls. The other three cases involve solving the PBE
while considering different flow velocity distributions. In
the first of these, we assume that the flow profile can be
approximated by the universal law of the wall, Eq. (14).
The friction velocity is adjusted so that the average
Mach number of the 1D profile matches the bulk Mach
number of the 2D test section. This approach follows the
conclusion of Jing et al. [17], who demonstrated that, when
simplifying a 3D duct to a 2D duct, the average Mach
number must remain constant.

The other two cases also solve the PBE but use a
hyperbolic tangent velocity distribution. In the first of
these, the boundary layer thickness δ99% is matched to
that of the universal law of the wall. In the final case,
the boundary layer displacement thickness, δ∗, is matched
instead.

For the impedance eduction considering the solution of
the PBE, we follow an iterative procedure first presented
by Roncen et al. [21]. The dominant axial wavenumber of
sound in the lined duct section, kz,exp, is extracted from
the equally spaced microphone array record using the KT
algorithm, as detailed in Bonomo et al. [37]. The eduction
routine minimises a cost function defined as

F(Z) = |kz,exp − kz,PBE(Z)| , (21)

where kz,PBE is the wavenumber obtained by solving the
eigenvalue problem of the PBE. The Levenberg–Marquadt
algorithm [38, 39] is used to minimize this cost function.
To accelerate convergence, the impedance obtained by
solving the convected Helmholtz equation with the Ingard–
Myers boundary condition is used as an initial guess.

The results obtained for the four cases considered,

using samples A and B, are shown in Figures 12 and
13, respectively. Greater differences between upstream
and downstream educed impedances are observed with
sample A, which exhibits stronger non-linear behaviour
with respect to flow effects. However, the conclusions
regarding the impact of assuming different 1D flow velocity
distributions are consistent for both liners and can be
summarised as follows. The differences in the educed
resistances for the different velocity profiles are larger
compared to the differences in the reactances, aligning
with observations from the numerical experiment. Greater
differences are also noted with increasing Mach number.
One may notice that around 1400 Hz, the duct cross-
section allows more than one propagating mode, which
increases the sensitivity of the impedance eduction process
and may contribute to the local slope change observed in
the reactance, particularly in the absence of mean flow.

Additionally, the impact of assuming different flow
profiles is more pronounced for a downstream acoustic
source (upstream propagation), consistent with the
larger biases observed in the wavenumbers obtained
for the different formulations. Regarding the different
formulations used for solving the PBE, significant
differences are observed among the three cases. The case
with matching δ∗ shows the best agreement between the
solution obtained for the hyperbolic tangent profile and
that for the universal law of the wall.

As anticipated by the numerical experiment, good
agreement is observed between the prediction using
the Ingard–Myers boundary condition and the solution
obtained for the universal law of the wall profile,
particularly for an upstream acoustic source (downstream
propagation). For impedances educed with a downstream
acoustic source, the IMBC slightly over-predicts compared
with the solution of the PBE with the law of the wall. This
is consistent with the results of Weng et al. [14], who solved
the linearised Navier–Stokes equation for a realistic flow
profile comparable to the one considered in the present
work. In summary, these results indicate that, in the
low-Mach-number and small-duct regime considered here,
neglecting the velocity gradient altogether by assuming
uniform flow leads to more accurate impedance eduction
results than adopting overly simplified sheared velocity
profiles, whose artificial refraction effects can bias the
solution. Note that this is in agreement with the
theoretical results summarized in section 5.4.

7. Conclusion

In this work, the effects of the sheared flow profile
shape on acoustic propagation in a 2D duct were revisited,
extending the early work of Nayfeh et al. [22] to the context
of impedance eduction techniques. Three velocity profiles
were considered for solving the acoustic field in a duct with
sheared grazing flow, using the Pridmore–Brown equation,
with the profiles matching the average Mach number and
either the δ99% or δ∗ boundary layer thicknesses. The
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Figure 12: Impedances educed for sample A. (a,b) M = 0.2; (c,d) M = 0.3. Dashed lines denote impedances educed with an upstream source,
and solid lines denote impedances educed with a downstream source.
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Figure 13: Impedances educed for sample B. (a,b) M = 0.2; (c,d) M = 0.3. Dashed lines denote impedances educed with an upstream source,
and solid lines denote impedances educed with a downstream source.
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wavenumbers obtained from the PBE were then compared
to those estimated by solving the case with uniform flow,
i.e., the Convected Helmholtz equation, with the Ingard–
Myers boundary condition handling the refractive effects
within the boundary layer. Results suggest that the
IMBC leads to lower errors relative to the solution for
a sheared flow profile with a realistic wall law turbulent
boundary layer velocity distribution, compared to the
solution obtained with a simplified profile formulation.
Consistent with the findings of Nayfeh et al. [22], it was
observed that matching the boundary layer displacement
thickness δ∗ improves agreement between the different
formulations, although noticeable differences remain.

Next, a numerical experiment was conducted to assess
the accuracy of the IMBC in the typical impedance
eduction range for small ducts, by assuming that the
PBE is a exact representation of the real world. The
wavenumbers obtained for the different flow profile
formulations were used as input for the traditional
straightforward impedance eduction routine. Results
suggest that for non-realistic flow profile formulations,
the simplification to the uniform flow assumption with
the IMBC may lead to mismatches between results
obtained for upstream and downstream propagating
waves, particularly for the acoustic resistance. However,
this mismatch does not occur when a realistic velocity
distribution is used to simulate real-world conditions. In
contrast, several previous studies have concluded that the
Myers condition can be inaccurate, not only because of
its ill-posedness in the time domain but also in predicting
absorption in the frequency domain. The present findings
go against this prevailing view. In fact, most of these
earlier assessments have relied on simplistic velocity
profiles less representative of real flows than the van Driest
profile, whereas the present work demonstrates improved
agreement when a realistic profile is used. In particular,
the van Driest profile has a far higher velocity gradient
at the lined wall than the more simplistic velocity profiles,
and so might be expected to be better approximated by the
vortex sheet assumption of the IMBC than the smoother
more simplistic velocity profiles. This can also be noted in
the velocity profile shape factors (18), with a factor of two
difference between the van Driest and other profiles. In
addition, a parametric study was conducted to investigate
the impact of the average Mach number and the duct
width, and consequently, the boundary layer thickness. It
was found that the error associated with the simplification
to the IMBC increases with both the average Mach number
and the duct width.

Hereinafter, an iterative eduction routine was used
to evaluate the impact of solving for the sheared flow
profile rather than relying on the IMBC approximation
with experimental acoustic data. This analysis allowed
to investigate the effect of simplifying the flow profile
representation when performing impedance eduction and
solving for the sheared flow. The results obtained align
with the conclusions of Weng et al. [14], who suggested

that solving for the acoustic field using a realistic flow
profile produces reasonable agreement with the IMBC
solution.

The main conclusion of this work is that the Ingard–
Myers boundary condition is a reasonable simplification
in the context of low Mach number and small-duct
impedance eduction, at least for 2D ducts. These findings
contrast with the interpretation of Gabard [23], who
noted no significant influence of the boundary-layer profile
on acoustic propagation provided the correct boundary
layer thickness was maintained. The present results
demonstrate that, in the specific context of impedance
eduction in small ducts, the shape of the velocity profile
can indeed have a measurable and physically meaningful
impact on the educed impedance, independently from
the boundary-layer thickness. The natural continuation
of this work is its extension to a realistic 3D duct, as
proposed by Roncen et al. [21], while taking into account
the importance of a realistic flow profile representation.
Finally, it is important to highlight that the current
conclusions are limited to the specific case of small
ducts with only plane waves, and it remains to be seen
how they extend to larger ducts, higher frequencies,
and higher-order modes. In particular, higher-order
modes, and especially the higher-azimuthal-order modes
in cylindrical ducts typical of rotor-alone tones in
aeroengines, experience a strong refractive effect from
the boundary layer that could be expected to differ
significantly from the plane-wave modes considered here.
However, lab-based impedance eduction tests of acoustic
liners usually also rely on small-ducts with plane waves,
and so the neglect of higher-order modes in this work
remains valid in that context.
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Figure A.14: (a) Convergence error of the least-attenuated mode wavenumber propagating upstream at 3 kHz with the SDOF-like impedance.
(b) Visualisation of the Chebyshev grid points over the universal law of the wall profile for N = 151.

Appendix A. Assessment of the Convergence of
the Numerical Grid

The round-off error in the i-th derivative based on
Chebyshev polynomials is a function of the machine
precision, ϵ, and the number of points on the grid, N .
The maximum value that this error can achieve is given
by [40]

round-off error = ϵ

(
2N

π

)2i

. (A.1)

This implies that the grid cannot be refined indiscrimi-
nately, since the eigenpairs will not converge to the exact
solution. On the other hand, it must be sufficiently refined
to accurately represent the boundary layer profile.

To evaluate whether the grid considered in this
work converges to the exact solution, we estimate the
convergence error, E , as

E ≡
∣∣∣∣kz,N − kz,Nmax

kz,Nmax

∣∣∣∣ , (A.2)

where kz,N is the wavenumber obtained for a grid with
N points and Nmax is the maximum number of points
considered in the grid. For this work, Nmax = 785 was
found to be sufficiently large. The convergence obtained
for the upstream propagating mode at the frequency
of 3 kHz with the SDOF-like impedance is shown in
Figure A.14a; this analysis is typical of all frequencies and
results computed here, and further convergence figures for
other cases are omitted for brevity.

The rate of convergence is observed to be approxi-
mately geometric up to N ≈ 300. Beyond this point,
the results suggest that convergence has been achieved.
However, one may also notice that for N > 200, the round-
off error associated with second-order derivatives begins
to dominate. To achieve a balance between computational
cost and accuracy, N = 151 was selected, which yields

E < 1× 10−6. Finally, it is important to highlight that
this discretization ensures at least one point in the linear
viscous sublayer (y+ ≤ 5), as can be see in Figure A.14b.
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